SUBSYSTEM 4

Writing Smart Phone Apps

Table of Contents

111190 To 1 ox o o I 10D A 1 A A A O Y U 1
15 5] (=3 7 (= e o P 0 P PP 0 P P P S P o P P e P e P P PR PR 2
Section 1: The Anatomy of an ApPPcooveveieeeeiieeiiiiineeeiee, 3
Application LIfECYCle.........cccooiiiiiie e 4
ADDICALION STAIES v..luutvrrebeerrssessrsersertveterrestasbessessrserserteriseisebestrsseserrriers 4

Section 2: Android StUdioooeeviiiiiiiiiiii e 8
App ldea: What do | weigh on JUPItEr?oovveeeieeeeieieeeieeee e 11
Starting @ ProjecCtcooiiiiiiieie e 11
Section 3: Simulate and RUNoooooiiiiiiiiee 24
Create a Virtual DeVICEccoooviiieiiieeeeee 24
Section 4: Adding Functionalitycccoeeeeeiiiiiiiiieeeennn. 33
Create the User Interface...........coooooieei 33
Write Code to Make ThingS WOrkcccoeeeeiiiieiviiiiieieeeeeeeeeiin, 40
Add the other planets................uuuiiiiiiiiiiiiiiees 53
Create & CUSEOM COlOFuueereereesessesisseesesssssssssssssssssssssestesssessssssssens 55

Add Padding to an ODJECT..........uuuuiieieeeieiiieieeeeeeeeeeeeeaeeeeseseseeseeserseneenennne 60

Addind a Gustomiden LTI LI L LT T LTI T T LT TTTTTTT LT T 61
Appendix A: Additional RESOUICeS...........oocoevvviiiiiiininnnnn. 64
Appendix B: Loading an App on your Android Device 65

Appendix C: Code LIStINGSoveeeviiiiiiieeriiiiieeeeeeiiin e 67

It is probably hard to imagine life before our constantly connected existence
we have today. Cell phones started as a way to talk to people, advanced to a
way to text people, and have come to the point that they act as our connected
computers on the go. We can hook into the internet now wherever we are and
do all of the things that we would normally do on a full sized computer. We
can listen to streaming music while navigating to a restaurant we found while
searching for local things to do.

One of the most impressive things our phones so is give us access to seemingly
endless apps to satisfy our need to conduct business, catch up on shows we
missed, or play games while we wait for our teeth cleaning. These apps have
made the cell phone a one stop shop for so many things.

And yet, there is still more room to grow. There are people out there waiting
for YOUR app. Writing apps is not only limited to software engineers. Today,
anyone can write an app and post it for sale on the popular app markets. This
subsystem will introduce the topic of developing apps for the Android
operating system using Google’s Android Studio. Android Studio will run on
either Windows or Apple computers and is free.

After completion of this unit, the student will:

1. be able to explain the basics of phone app development.

2. be familiar with Integrated Development Environments and how they
make software writing easier.

3. describe the basic framework of an Android App.

4. write, compile, and run Android programming code.

5. understand some of the basics of the Java programming language.

6. understand how to setup and run programs on a phone simulator.

7. understand the requirements to post an app on the app store.

Many people have dived into the world of app development. Some have been
so excited, they have gone on to form companies and have made a good living
writing apps. The skills gained in writing your own apps, as well as the
understanding of how apps work, will lead you to a better understanding of
computers and software in general.

Let’s get started.

Section 1: The Anatomy of an App

Android is an operating system developed by Google for the mobile market.
An operating system is the fundamental underlying software that allows
programs (apps) to communicate with hardware, memory, and manage
computer resources. Programs cannot run on a machine without an operating
system. Some examples of operating systems are Windows, Linux, macOS,
UNIX, and Chrome OS. These software packages run on desktop computers,
laptops, tablets, and mobile smartphones. Without them, every program
would have to be tailored to the specifics of a particular hardware device.
With these operating systems, we can create common interfaces so maybe the
program just needs to request the device to play a song. The program would
request it from the operating system and the operating system would go
through the required steps to play it. | can now run this program on another
platform and when the program requests to play the song, that new operating
system will play the music on that particular device. By doing this, developers
can write more generic programs and let the operating system handle the
dirty work.

This idea is used extensively in Android programming. Android apps are
programmed in Java. Java is a programming language that was envisioned as a
“write once, run anywhere” language. That means you can write a program in
Java, and then run it on multiple phones and tablets without having to rewrite
the program code.

One of the things you need to understand about an Android app is the app
lifecycle.

Because an Android app will run on mobile devices, it has a couple of specific
requirements that most applications don’t have to worry about. First, when
you start and app on your phone, it fills the whole screen. You interact with it
by touchscreen and button inputs. As you are doing this, your phone may ring
and your phone app suddenly appears and covers the app you were on. When
your call is done, you close your phone app and the original app reappears.
Android needs to handle the fact that the current app may change states at
any time. You may be using it, and then, load an app over it. You may then
switch back to it later. If the phone had unlimited memory, this wouldn’t be an
issue. But the Android operating system makes sure it can always respond to
your requests by controlling what apps are in memory and which ones get
shut off. This would all be very complicated if Android didn’t come to the
rescue with a set of functions that are called throughout the lifespan of your
app. These functions can be used to place the app and data in safe conditions
and then restore the app when needed. Below is a discussion of these
functions.

Function: A function is a set of programming instructions that are called to
execute by a program or operating system. In the functions below, these are
called by the Android operating system at specific times in the app lifecycle.

Android handles apps in the form of what are known as Activities. When you
load a screen that interacts with the user, that is an activity. If you pop up a
selection dialog, that is another activity. Each one of these activities will have
its own lifecycle.

Application States

An Android activity can exist in one of the following states:

Active (or running): The activity is in the foreground on the screen. It is the
one that is active and taking input from the user.

Paused: The activity is visible, but something is covering it. This happens when
a pop up message or dialog is open (it is also an activity) and is partially
covering the other activity. A paused activity is still running in the background.

Stopped: If the activity is totally covered by another activity, the activity is
stopped. In this state, the app is essentially frozen. It does not continue to run,
but it has the ability to start running again where it left off. However, in this
state is may be shut down completely if the operating system decides it needs
the memory for higher priority tasks.

Destroyed: When an app is paused or stopped, the operating system can
completely remove it from active memory. When the app starts again, it does
not have the information of the state it was in when it was destroyed. So if
you were working on a text message, and you shift to other apps to perform
work, if the operating systems destroys your app, you will lose the text you
were working on.

Fortunately, by design Android gives you the opportunity to run code when it
places your app in the various states. That means you can be notified when
your app is about to be shut down and you can run some code to save
progress in a game, save the text you were writing, log usage statistics, or
anything else you want your app to do.

Here is a description of the functions Android uses at the various states:

onCreate(): This function is called when the activity is first created. This is
where you will do all of your setup for the application. You will assign variable,
build your graphic interface with the user, initialize data, etc.

onStart(): This function is called when the activity is just becoming visible to
the user.

onResume(): This function is called when your activity is ready to receive input
from the user.

onPause(): This function is called when another activity comes to the
foreground of the screen. This is a good function to place code to save the

5

current state, stop running services and animations to conserve battery
power, and other things to get the app ready to become dormant.

onStop(): This function is called when the activity becomes completely
covered by another activity and is no longer visible on the screen.

onRestart(): This function is called when the user navigates back to the
stopped activity to display it again. This function is always immediately
followed by onStart().

onDestroy(): This function is called when the activity is going to be unloaded
from active memory. This can be because the program itself calls this function
to destroy it or the operating system calls it to free up memory for other
activities.

The following chart shows the flow of these states from one to another.

e ™
I4 N
[Start Activity |
\‘\\-- /
——

» onCreate()

|

onStart() «— onRestart()

'

onResume() |«

[Activity is '\.l
'\\ Running J

: — onPause() User Brings the
Higher Priority Apps | Activity Back to
Need Memory the Front

onStop()

!

Activity is
onDestroy() sh utd(t;,ywn

Most of the setup and shutdown code for an app is located in these functions.
Most of the code to actually interface with the user and perform desired
operations occurs in the box labeled “Activity is Running.” For a simple app,
you may never need to add code to a lot of these functions. But you will

always need to write some code in the onCreate() function.

Android apps are written by working on three separate parts of the app and
then combining them together. Complicated apps may have many different

parts, but all apps will have the following sections:

1) The Manifest. This is a file that hold information about the app itself.

has code to register activities with the operating system, set the
minimum Android version, give the app permission to utilize your
phones services and more.

2) The Layout (User Interface or Ul). This is a file that looks a lot like the

3)

html code for a webpage. It establishes the user controls and displays
that will be used in the app, determines their position on the screen
and whether they are visible or not, what colors and fonts are used,
etc. Android Studio gives you the ability to drag and drop components
and write this code automatically.

Java Files. These files are where we write the code for the app. Here
we will get the app to load our Ul and recognize components, handle
events like swipes, button pushes, and closing the app, and do the
majority of the functionality that our app is intended to do.

With that foundation laid, let’s load Android Studio and start looking at how

we can turn an idea into an app.

t

Section 2: Android Studio

Android Studio is an Integrated Development Environment (IDE) from Google
used for writing Android Apps. It has so many features they can’t all possibly
be covered in an introduction course like this. It can be used to write simple
programs like we will program. But, it is powerful enough to tackle
complicated games and complex connected productivity applications. And
amazingly, it is free to use.

Loading Android Studio on your computer is pretty straight forward. Go to the
Android Studio Download page.

https://developer.android.com/studio/

You will see something similar to the following:

= Q Android Studio FEATURES ~ USER GUIDE Q search

< Back to Developers

Android Studio
The Official IDE for Android

USER GUIDE

> Read the docs > See the release notes

https://developer.android.com/studio/

If the download button doesn’t display your particular operating system (0OS),
scroll down to the bottom of the page and you will see links to alternate OS
versions.

VERSION: 2.2.3.0

RELEASE DATE: DECEMBER 6, 2016

Select a different platform

=T

72105b119adbcababal14abeesdc78f3001bef7

b52¢0b25c85¢252fe55056d40d5b1a40alced03c

android-studio-ide-145.3 39-windows.zip 8c9felbaacdbelead5e500f27ac53543ede055e]

{, no installer

No Andreid S

androi de-145.3 in 32.2 59fbaSa17a508533b0decde584849b213fa39c65
No Andreid SDK, no installer
Mac android-studio-ide-145.353773%-mac.dmg 51f282234c3a78b4afc084d8ef43660129332¢37

Linux android-studio-ide-145.3537739-linux.zip 72c9b01669f2fed6edec] 6e466917fac04coa7f

If you need a version for Mac or Linux, it can be found here.

Click on the applicable download, agree to the terms, and start downloading
the installation program.

Google has a good video of the installation process if you require extra help.
You will find that on the page you are directed to after you click to download.
But the installation is fairly automated so if you have installed anything else
before, this should be pretty easy.

You will be presented with the following opening screen:

Android Studio Setup - x

Welcome to Android Studio Setup

Setup will guide you through the installation of Android
Studio.

It is recommended that you dose all other applications
before starting Setup. This will make it possible to update
relevant system files without having to reboot your
computer.

Click Mext to continue,

Android
Studio

< Back Cancel

III

Continue to progress through the installation screens. Click “Next” and
agree” as needed and keep all of the default selections on each install screen.
One you click “Install,” it will take a while to load all of the required files.

When the installation is complete, start Android Studio. It will take a while for
it to start and finish loading. You may see a pop up like the following:

- pd

Platform and Plugin Updates

The following components are ready to update: Android Support Repository,
Google Repository, Android SDK Platform-Tools, Android SDK Platform 25, Google
APIs Intel xB86 Atom System Image, Android SDK Tools 25.2.5

menu) ;

Android Studio looks for updates when it loads so you may be prompted to
update. At this point, just hover over the warning and you will see an X show
up to close it. Close it. Whenever you want, you can perform updates to the
items detected, but it isn’t necessary right now.

10

You will eventually be brought to an opening screen. This screen will give you
some selections to start a project.

o

-

‘ Android Studio

1% Start a new Android Studic project

Open an existing Android Studic project
¥ Check out project from Version Control =
¢ Import project (Eclipse ADT, Gradle, etc))

[Y Import an Android code sample

%# Configure ~ Get Help ~

Are you ready? Let’s start your first project.

App Idea: What do | weigh on Jupiter?

Let’s say you just saw an interesting TV show about space travel and they
talked about the difference between the gravity of Earth and Jupiter. It got
you thinking: “It would be fun to have an app that calculated my weight on the
other planets.”

Not satisfied with just thinking about it, you set out to actually create this app.

Starting a Project
Click “Start a new Android Studio project.”

Starting a new project initiates an app wizard which will do most of the setup
for you. You just need to give it some basic information about the app name
and what type of app it will be.

11

At the first screen, you will be given a chance to name this app. In the block
labeled “Application name:” type in “Planet Weight.”

' Create Mew Project X

New Project
Android Studio

Configure your new project

Application name: | Planet Weight
Company Demain: | subsystem.example.com
Package name: com.example.subsystem.planetweight Edit

[] Include C++ Suppert

Project location: C:\Users\suhsystEmMndrnldPrnJE(tS\PlanetWelght ‘E|

(o) N (o] |

In the block that says “Company Domain,” you can just leave this as the
default value. If you decide to form a company that writes apps, you can
change this to match the company name. Right now, it doesn’t have any effect
on the project creation.

Click the “Next” button at the bottom.

You will now be presented with a dialog that lets you choose which version of
Android to build this app to. There are some decisions to be made here as a
app developer. If | choose an old version of Android, | will make my app
available to more people. If you think your app may be popular in areas of the
world that are not as technologically up to date as other countries, you may
want to lower the version to allow older phones to run it. The problem is that
exciting features are added to Android all the time and selecting an earlier

12

version may not allow you to take advantage of these. For now, just use the
default setting.

® Create New Project X

g) Target Android Devices

Select the form factors your app will run on

Different platforms may require separate SDKs

Phone and Tablet

Minimum SDK | APl 15: Andreid 4.0.3 (lceCreamSandwich) n

Lower AP| levels target more devices, but have fewer features available.

By targeting API 15 and later, your app will run on approximately 97.4% of the devices
that are active on the Google Play Store.

Help me choose

I:] Wear

Minimum 5DK |API 21: Android 5.0 (Lollipep) n
v

Minimum SDK |API 21: Android 5.0 (Lollipop) n

] Android Aute
I:] Glass

Minimum 50K | Glass Development Kit Preview (AP 19) n

| Previous| m | Cancel | |

Press the “Next” button at the bottom of the screen.

Next, Android Studio presents you with a number of standard app packages.
This can speed up your coding considerably because the wizard will
automatically add the code and settings required to support these types of
apps. Your app may consist of many Activities, but starting out with a prebuilt
one for the task you wish to do makes customizing it and running it much
quicker. It is also a great chance when you are starting to learn the basics of
creating an app with the wizard and seeing how Android Studio sets up the
different kind of app structures.

13

We are going to start from scratch, so select the “Empty Activity” and then
click the “Next” button.

® Create New Project

F o
"_*7 Add an Activity to Mobile

Add No Activity

Basic Activity
Google AdMob Ads Activity Google Maps Activity
| -

| Previous | m [cancer | [Fmsn |

Now, Android Studio will present you with the ability to change the Activity
and Layout names if you desire. This is not the same as the App name that you
set at the opening screen. This will just be the name of the Activity (remember
we talked about an Activity as something the user can interact with — like a
screen with a button). An app can have many Activities so it is just asking if
you want to change the name of the Activity it is about to create.

14

® Create New Project X

‘*} Customize the Activity

Creates a new empty activity

Activity Name: | MainActivity]

Generate Layout File

Layout Name: | activity_main |

Backwards Compatibility (AppCompat)

Empty Activity

The name of the activity class to create

| Previous | | Next ‘ | Cancel ‘ m

Leave the Activity and Layout names with the default value.

Click the “Finish” button at the bottom of the page. The wizard will now begin
the long process of establishing and configuring your new project. You can
watch the status in the lower status block. Give it time. Depending on your
computer, this can take several minutes. When it is complete, you will see a
screen similar to the one below that is highlighted with important areas.

15

Eile Edit View MNavigate Code Analyze Refactor Build Run Tools VCS Window Help

OHO +« % M M ¢ N [Eeppr| P P L &L 7
PlanetWeight app src main java com example subsystem planetweight '€ MainActivity
. 11 Android @ = | %- I | © acivity mainxml % | (© MainActivityjava %
'g app package com.example.subsystem.planetweight; OP -
= manifests en Flle
.
java import ... T]
com.example.subsystem. planetweight
B"e TeiEy L3 public class MainActivity extends AppCompatiActivity {
inActivi

com.eample.subsystem.planetweight (androic Boverride
com.examplesubsystem.planetweight (test af protected void onCreate (Bundle savedInstanceState) [
3 res super.onCreate (savedInstanceState) ;
& Gradle Scripts setContentView (R.layout.activity main);

i

<] 7: Strudure

}

Curren en File

The section highlighted by the red arrow is where you will find the files
associated with your project. Here you can open Java, Layout, Resource, and
Configuration files.

The green arrow points to the area that displays the currently open file. This is
where you will type in data into your project.

The blue arrow shows you tabs of all the open files. You can navigate to the
different tabs by just clicking them. When you do, you will see the content
displayed in the green arrow area.

Android Studio is what is known as an Integrated Development Environment
(IDE). These are very convenient and powerful systems to allow you to write
code, compile applications, run them on simulators, debug (or fix) problems,
interact with the app while running, and combine other prebuilt code into
your own application. They make the job of coding much easier and more fun.

In the navigation tab area, you will see 2 tabs for files that have been opened
for us. These are the Layout and Java file created by the wizard. That is two of
the three files we discussed earlier. The missing one is the manifest file. If you
look at the Project Files section, you will see a folder called “manifests.” Click
on the gray arrow to the left of the folder to expand what is in it. You will see a
file called “Android Manifest.xml.” Double-click this file to open it.

16

File Edit View Navigate Code Analyze Refactor Build Run Tools VCS Window Help
OHO b [0 R« &l app v | P & G g || L
PlanetWeight ' [iapp [src ' [main = % AndroidManifestaxml
Andraid - S activity mainxml % | (€ MainActivityjava % | [AndroidManifestxml x

app
manifests

+ 1Projet

<?xml version="1.0" encoding="utf-8"7>
2 AndreidManifest.xml <manifest xmlns:android="http://schemas.android.com/apk/res/android’
java package="con. cxample. subsystem. planctveight ">
com.example. subsystem.planetweight
© % MainActivity <application
android:allowBackup="true’"
icon="gmipmap/ic_launcher”
label="Planet Weight'
d:supportsRtl="true’
> Gradle Scripts android: theme="@style/AppTheme">
<activity androidiname=".MainActivity"s
<intent-filter>
<action android:name="android.intent.action MAIN" />

1 7:Structure

com.example subsystem.planetweight (ando

com.example subsystem.planetweight (test

res

5 Captures

<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>

</manifest>

Favorites

You will see this document open up in the document window. Don’t worry
that a lot of what you see looks crazy. It should at this point. One thing that
you can see though is that there are some very readable things in this
manifest. First, the package name appears at the top of the file. This is the
package name we selected (or rather, the wizard selected for us at the
beginning). Then, there is a section called “<application.” This section will
include all of the important information the Android system needs to know
about our app. In the first line, we tell the operating system to allow someone
to back this app up on their phone. This give Android permission to transfer
the app from the phone memory to a memory card in the phone. The next line
gives the name of the icon we want to use. It is set to the default right now,
but there is an easy way already built into Android Studio to make your own
icons so we will definitely do that later. The next line is our app’s name.

A few lines down, you will see a section called “<activity.” Each activity in our
app must be listed in this manifest or else Android will not allow it to run. This
is a safety feature of Android to prevent external activities from gaining access
to your app. Early in programming, you may forget this important fact. If you
add another activity to your project, like a simple pop-up selection dialog, and
you do not add it to the manifest, your app will crash every time you go to run
it and you will get frustrated looking for the problem in your code when the
problem is in your setup. Keep that in mind if your app keeps crashing and you
don’t see any obvious problems.

17

In the tab navigation section click on the tab labeled “MainActivity.java.” This
will bring up the contents of this file on the open file section.

File Edit View Mavigate Code Analyze Refactor Build Run Tools VCS Window Help
O O % 0O R & “ app - | P T G B x4
PlanetWeight ' [Gapp ' [src | [main [1java 1 com [£] example | [£] subsystem - [7] planetweight | © MainActivity

Android ¢ < activity_mainxml ¥ | (£ MainActivityjava ¥ | & AndroidManifestxm| %

et

app package com.example.subsystem.planetweight:
manifests

+ 1:Proj

%, AndroidManifest.xml import ...

ava
! @ public class MainActivity extends AppCompathetivity {
com.example.subsystem.planetweight

€6 MainActivity Boverr

L I Structure

com.example.subsystem.planetweight o protected void onCreate (Bundle savedInstanceState) {
com.eample.subsystem.planetweight super.onCreate (savedInstanceState) ;

3 res setContentView (R.layout.activity main);

. }

< Gradle Scripts)

+ Captures

You can see right now, there is not a lot going on in this file just yet. When we
selected Blank Activity in the wizard, you might expect that we would get a
blank activity. And yet, there is a little bit of code here. The code really is the
absolute minimum needed to create the activity. This file consists of the
package name that this file is attached to, a line that defines this activity and
associates it with an already well established activity type:

public class MainActivity extends AppCompatActivity {

There is a bunch going on here. But what this line says is to create a class
called MainActivity that is an extension of the basic class AppCompatActivity,
and make that resulting class public so other code can have access to it.

A class is a piece of code that creates an object that we can later use, modify,
and discard. It is used as the primary means of programming in object-
oriented programming languages like Java, C++, and Python. Classes allow us
to take objects that have already been created and modify them for our use
with little additional code. For instance, we will add a button to our app to
calculate the Planetary Weight of a person. We will not write any of the code
for the functionality of that button. We will use a Button class that already
knows how to draw itself, operate itself, and report if it has been clicked. We
will just tell our code the button is there and instruct it to respond to the

18

clicking. These classes have made programming much easier and allowed the
reuse of classes in other programs. This is good news for programmers. If you
spend days getting the look and feel of a particular user interface component
correct, you can make it into a class and use it across many different operating
systems.

The Public term above is what is known as an access identifier. It determines
what parts of your code have access to this activity. There are three primary
access identifiers:

1. Private: This restricts the access to the class itself. Only code that is a
part of the same class can access code in the class.

2. Protected: This allows the class itself and all its subclasses to access
the class.

3. Public: This means that any code can access the class.

These different access levels help programmers keep their code protected.
This allows them to select names for functions and variables that might be
common to not be accessed by other code that may use those names in their
own code segments. This allows you to have a variable named “color” in your
code section, and it doesn’t interfere with the variable “color” in the main
program. Just set the variable “color” as private in your code. Then, code
outside that section can’t even see it.

Again, don’t worry if this is a little confusing. You will not need to understand
it all perfectly to write your first program. If these concepts are introduced a
little at a time, it will help de-mystify some of the words in your code and
make you feel a little more familiar with why they are there.

A few lines down, you will see the declaration of the onCreate() function. This
should look familiar. This was one of the functions in the Activity Lifecycle
discussed earlier. If you remember, this function is called when an activity is
first started.

protected void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState);
setContentView (R.layout.activity main);

19

Notice the setContentView() function. It has the name of the layout file the
wizard created for us. This is the place in our code where that layout is loaded
to show the user.

Let’s look at that layout file. On the open file navigation tab, select the
“activity_main.xml” tab.

This opens the activity layout file. Here you will see the graphic picture of how
your activity is going to look.

' heekBar (Liscrete)
QuickContactBadge

mponent Tree

V7

* Rendering Problems
" Preview timed out while rendering the layout. This typically happens when the
is an infinite loop or unbounded recursion in one of the custom views. (Details)

Q._-'fl"ip: Try to refresh the layout.

Sometimes, your project will take a long time to load. You may receive a
warning in your layout file. If this happens, click “refresh” on the warning and
this will usually clear the problems.

20

File Edit View Navigste Code Analyze Refactor Build Run Tools VCS Window Help

OH O + % 0 A L] A [[Zapp~] P G B 2L ?
PlanetWeight = [app st main © % AndroidManifestxml

1 Android - €@ & | #- B | = activity_mainxml % | (€ MainActivity.java % | < AndroidManifestxml x

arp Palette #-0- B EE - Onewsar 25+ (Papptheme Eianguage= [J- Prog

manifests

i Widget o
& B AndroidManifestxml Hicgers Ox@E ¥ QO
(8] TextView

java

LProjet |

com.example.subsystem, planetweight Button
ToggleButton

© % MainActivity =
com.example.subsystem.planetweight (androig lilmﬂkﬁnx "o
3 res Av| Checked TextView

> Gradle Scripts Spinner
= ProgressBar (Large)

<] % Strucure

5 Captures

= ProgressBar

= ProgressBar (Small)

= ProgressBar (Horizontal)

" SeekBar

" SeekBar (Discrete)
QuickContactBadge

Component Tree

[1] activity_main (RelativeLq

e

2Z:Favorites

¥ Build Variants

Design | Text

In this view you are given a preview of how your interface is going to look. This
area allows you to drop in new components, rearrange existing components,
and set the values of many items. Right now, the layout only consists of a title
bar with the app name in it (Planet Weight), and a text box that says the words
“Hello World.” If you have ever learned another programming language, you
might be familiar with this. The first lesson of most programming languages is
simply to display “Hello World” on the screen.

On the bottom of this section are two tabs. You are currently viewing the
“Design” tab. This gives you how your Ul will look. The “Text” tab is what the
actual layout file looks like.

Click on the “Text” tab.

21

droidProjects\PlanetWeight] - [app] - .. \apphsrcimainiresilayoutiactivity_mainxml - Android Studio 2.2.3 - X

Analyze Refactor Build Run Tools VCS Window Help
R & A ([mapp~| P & G € L7
main (% res [layout | ' activity_mainml
@ & | #5- 1 | B activity mainxml % | (€ MainActivityjava % Preview o
EHE § & Uunoussr ms- PappTheme Elanguager
O=@H W 2

<2xml version="1.0" enceding="utf-g"7> b4

e Paette

ni &

xmlns:tools="http://s
sstem.planetweight id:id="g
ayo

droi out 1 —'match parent’
sstem.planetweight (androic) ayout_height="natch parent *RE0
o 1d:paddingBot tom=
{ECenpia et et e android:paddingleft=" Planet Weight
paddingRight="

id:paddingTop="1
tools:context="con.example. subsystem.planetweight MainActivity ">

as . android. com/tools
vity main”

match parent”

<TextView
android:layout width="wrap content
android:layout_heigh
android:text="Hello World!" />
«</Relativelayout>

content”

Vz

Design | Text

nitor [0: Messages % TODO " Eventlog [l Gradle Console

Here, you can edit the actual text of the layout file. It also shows you a
preview of the Ul so you can see the effects your changes have. Right now,
you can see our layout has an element called “<RelativeLayout.” This is a
container that we can put components in and draw them relative to the
borders, any margins we establish, and other components. This really gives us
a drag and drop interface. We can select objects from the components menu,
drag them to the Ul, and drop them in the position we want them. Android
Studio then generates the correct layout code to make this happen. This is
convenient. But sometimes, dragging doesn’t quite get you the results you
need and you have to go to the “Text” tab and enter the desired values
manually. Android Studio gives you both options.

There is currently only one component in this RelativeLayout. It is a TextView.

It is a simple box that displays text. Currently, it is loaded with the text “Hello
World.”

It may not feel like it since we haven’t written any code, but we have a

complete Android app right now. The wizard has done its job and setup
everything this app needs to load itself in the Android operating system,
register its components, and initiate an activity lifecycle with our newly

O]

ajpeig

MaWBI g

[2Poj Plopuy.

22

created activity. In the next section we will setup a simulator and run this app
on an actual simulation of an Android device.

23

Section 3: Simulate and Run

Android Studio is a powerful app writing platform. On top of allowing us to
write the code for the app, visually create the Ul, and highlight errors and
suggestions, it also allows us to run our apps on simulated hardware. In this
section we will create a virtual phone, compile our app, and run the app on
the created phone. And we will do all of this from within Android Studio.

Create a Virtual Device

Android is an operating system that runs on phones, tablets, watches, TVs,
and other smart devices. Android Studio allows us to create a simulated device
so we can test how our apps will look on these different platforms. For our
app, we will just look at a smart phone.

To set up a virtual device, you will use the Android Virtual Device Manager.
This is a single location that you use to create, modify, store, and launch all of
your virtual devices.

Select Tools->Android->AVD Manager

24

Build Run [EE VCS Window Help
:? .(\ = Tasks & Contexts ¥ l" ?

Save File as Template...

B3 layout
Generate JavaDoc...
- I+ | Em:
Mew Scratch File... Ctrl+Alt+Shift+ Insert
IDE Scripting Conscle
pting)
c XML Actions ¥ schemas.android.com/apk/res/android’
* Firebase i.com/tools"

Android
androl

& Sync Project with Gradle Files

ayout_width="match Parelt,& andrpid Device Monitor

1o - n
et andro:f.d. laj'Dl-lt_helght— match parer| AVD Manager
. android:paddingBotton="16dp" =
et android:paddingleft="16dp" AL SDK Manager
android:paddingRight="16dp" +/ Enable ADE Integration
android: paddingTop="16dp" @ Layout Inspector

tools:context="com.example.subsyst "

@ Theme Editor

<TextView (! Firebase App Indexing Test

android:layout width="wrap content"”

android:layout height="wrap content"

android: text="Hellc World!" />
</Relativelayout>

When you select this menu item, the AVD Manager will open a dialog like the
following.

Android Virtual Device Manager - m] X

y n

H Your Virtual Devices

Android Studio

Virtual devices allow you to test your application without having to
own the physical devices,

=+ Create Virtual Device...

To prioritize which devices to test your application on, visit the
Android Dashboards, where you can get up-to-date information on
which devices are active in the Android and Google Play ecosystem.

Select the “Create Virtual Device” button. This brings up the Manager.

25

Virtual Device Configuration X

) Select Hardware
Android Studio

Choose a device definition

@ D]
= <[] Nexusb
Category Mame ~ Size Resolution Density
v Mexus § 40" 480x800 hdpi
Wear Mexus One Rl 4804300 hdpi ——r
Size: normal
m Nexus 6P 57 14402560 S60dpi g:::.\h‘"lzggdm
Tablet Mexus & 5.96" 1440:2560 560dpi
Mexus 5% 5.2" 1080x1920 420dpi 485" 1920px
108050
Mexus 4 47 768x1280 xhdpi
Galaxy Nexus 4.65" 720x1280 xhdpi
5.4" FWVGA 54" 480x854 mdpi
31" WVGA 31" 430%800 mdpi
47" WKGA 47 720x1280 xhdpi
MNew Hardware Profile | | Import Hardware Profiles ‘ ﬂ:‘r ‘ Clone Device...
[(Freviove | [[concel | [Fros | [Hei

The Manager will give you option at this point to create a virtual device. On
the left, you will see a Category window that lets you select which type of
device you want to test on. Select the “Phone” category if it is not already
selected. There are a lot of prebuilt options for devices, so we will take
advantage of this. Let’s build a Nexus 5 phone to test our app. Select “Nexus
5” as the phone if it is not already selected. The window on the right gives you
some of the basics of what user interface it uses.

Click “Next” at the bottom of the dialog.

The next section of the setup wizard allows you to specify which level of
Android is run on the device. These different options may come in handy later
in your development. But right now, we just want a device to run our app so
we will stay with the default value.

26

® Virtual Device Configuration X

System Image

y
,‘K) Android Studio

Select a system image

Recommended | 526 Imsges | Other Images

Nougat
Release Name API Level © ABI

Nougat Download 25 8664 Andreid

. - v APl Level
Nougat Download 25 86 Android ogle APIs) :
Mewat 6 AT with Google Pl ®
Nougat Download 24 xB6.64 Android G Pls) Andraid
Marshmallow Download 23 ¥B6 A = 7.0
Marshmallow Download 23 ¥86_64 Android Google Inc.
Lollipop Download 22 86 A e image
Loilipop Download 22 36 64 A X86

These images are recommended because they run the
fastest and include support for Google APls

Questions on APl level?
See the API level distribution chart

(2]
Crmvme | (I (e] [) []
Click “Next” at the bottom of the page.

Finally, you come to the last page of the wizard. Here, you can set some of the
behaviors of the phone. You can give the phone a special name. This is
important if you have multiple version of the same type of phone. You could
then name them with their specifics. Again, the name is fine so we will just
stick to all the default values.

27

 Virtual Device Configuration X

Android Virtual Device (AVD)

Verify Configuration

AVDMame | Nexus 5 AP 24 |

AVD Name
[Nexws s 4,95 1080x1920 420dlpi Change... |
The name of this AVD
B Nougat Android 7.0x86 Change.
Startup orientation p—

—
Portrait Landscape

Emulated

e Grophics: | Automatic n

Device Frame Enable Device Frame:

Show Advanced Settings

o] [) (s | I (e

Click “Finish” at the bottom of the page to generate your test phone.

When the software is done creating the device you will be brought to the
device summary page. Here you will see all the devices you have created, the
status of each, and you can start and stop them from here.

@ Android Virtual Device Manager - O hed

H, Your Virtual Devices

Android Studio

Type | MName | Resolutien | APl | Target | CPU/ABI | Size on Disk | Actions
[MNewssap.. 1080x192. 24 Android 7. x36 650 MB b 7>

=+ Create Virtual Device... @ E

28

You can see that we just have the one entry. This is the Nexus 5 simulator you
just created. Close the AVD Manager by clicking the “x” in the upper right
corner of the window. This will return you back to the main Android Studio
program.

Now we are ready to run our program. On the toolbar, there is a little green
triangle. This is a button to run the current project.

Build Run Teeols YC5 Window Help
A [[zapp~| P & (3 m 8 2 & 7

main.xml

layout & %= a

E- 1+ | = activit] wml % | (20 MainActivity.java *

Run

Press the “Run” green triangle to run the program.

You will be greeted with a dialog that looks like the following.

¥ Select Deployment Target x

No USB devices or running emulaters detected Troubleshoot

Connected Devices
“none>

Available Virtual Devices

|| Mexus 5 API 24

| Create New Virtual Device

[T Use same selection for future launches m | Cancel

Here, Android Studio is asking what you want to run the compiled program on.
You will most likely see the only option we have is the simulator we just
created. Select it and click “OK” at the bottom of the page.

This is going to do two things.

29

1) Android Studio will start compiling the program
2) The simulation of the phone will start to load

You may receive the following message. Just click “Proceed without Instant
Run” for now.

) Instant Run *

IE‘ Instant Run requires that the platform corresponding to your target device (Android 7.0 (Mougat]) is installed.

Proceed without Instant Run

This will probably take a long time. Be patient. You can watch the progress in
the lower display bar in Android Studio. The messages probably won’t make a
whole lot of sense, but you can see the progress and any messages in the
lower windows. What Android Studio is doing is compiling your program into
an app. This requires a lot of processor power to convert, merge, copy, and all
the other operation it takes to bind all of the information together. The
simulator will most likely take a long time to load (could be several minutes).
The simulator uses a lot of computer resources so minimize anything else you
are doing on the computer while the simulator loads. Once it is running,
Android Studio will send the compiled application to the phone and launch it
on the screen.

At some point, you will see a window pop up with the image of an Android
phone on it and a menu off to the right. This is the phone emulator. It will
operate just like an Android phone will. Later, if you are not familiar with
Android phones, you can play with the different buttons, turn it off and on,
and run different apps that are preinstalled. For right now, just wait until the
process is done and our app is displayed.

30

Android Emulator - Nexus_5_API_24:5554

If all went well, you will eventually see the phone with your app loaded on it.

Android Emulator - Nexus_5_AP|_24:5354

i~ Y A

Planet Weight

31

Ok, there is not a lot to it. But the fact remains; it is a full Android app with the
ability to load, unload, receive commands from the operating system, place
itself in different modes of operation, and display our text on the screen. This
is a very important step in your app development. If we couldn’t run our apps,
we wouldn’t know if they worked or not. Feasibly, you could develop apps for
Android on a MacOS machine, run it on the simulators to show they are
working, and post them to the Android App Store without ever testing them
on a real device and have a reasonable belief that they will function correctly.
Pretty amazing.

This is a very big step. From here on, we will be modifying our app to make it
continually better and running it at each step of development. If you have run
this simple app, you know that the basic framework is correct. If you get an
error from here going forward, you will know that it is code you added or
modified that is causing the problem.

Let’s get back to our app and add some real functionality.

32

Section 4: Adding Functionality

At this point, we have a working app that doesn’t do much. Let’s change that.

It is important to mention at this point that the intent of this set of lessons is
not to make you an expert programmer but to teach you how to get up and
running quickly. There are many ways to learn programming. This approach is
meant to get you programming, show you how things interact in Android
Studio, and give you enough information to program a simple app. From there,
if you enjoy programming, we encourage you to look at the resources in the
appendix to learn more. So if this starts to look complicated, don’t worry.
Programming is a thing that you can constantly grow and get better at. Over
time you will see that many of your skills will be transferrable to many other
programs you want to write and many things that confused you will become
easier.

Create the User Interface

Open project we started in Android Studio. On the tab navigation or from the
project navigation section, select the file activity_main.xml. This is the layout
file that had our “Hello World” TextView in it. We are going to add some
components (referred to as widgets) to give our app the interface it needs.

33

@ activity_mainxml * | (21 MainActivity java *

Palette [=HE - 2 i @ E_i i &'~ L Nexus 4~ 25+ C.AppTherne @Language- Dv
Widgets Ozax@HE @ 4O
[Ab] TextView

Button

TeggleButton
|Z| CheckBox

. - b4 [0
®) RadicButton Planet Weight

a leig
A+ CheckedTextView

Spinner

= ProgressBar (Large)

= ProgressBar

= ProgressBar (Small)

= ProgressBar (Horizontal)

' SeckBar

1 SeekBar (Discrete)
QuickContactBadge

Component Tree
activity_main (Relativel:
[Ab) TextView

Design | Text

Based on the overall idea of our app, we will need the following widgets in our
ul.

1) A TextView that states “Enter Weight” so the user knows what goes in
the input box. (We will just re-purpose the “Hello World” widget)

2) An EditText that allows the user to enter numbers for the weight.

3) A Button that calculates the weights on the different planets when
clicked.

4) A TextView that displays the output of our calculation to the user.

One of the easiest ways to program apps is to lay out all of the Ul elements
first, and then write the code that makes them all interact. So we will go
ahead and build all of these elements into our Ul.

34

On the left side of the layout file you will see a window with available widgets.
Below that, there is a navigation pane that has all of our current widgets in it.

S activity_mainxml ¥ | (€ MainActivityjava %

Palette - [EE 0E & Onexuss- mizs- (PappTheme EBianguage- [~ Properties o B -l
Widgets Om@E & @ o
A TextView
layout_width wrap_content
Button
ToggleButtan layout_height wrap_content
+| CheckBox TextView
) RadicButt R0 N
adioButton e text Enter Weight
A+ Checked TextView
S Benter Weignl # et
pinner
= ProgressBar (Large) contentDescription
= ProgressBar textAppearance
= ProgressBar (Small) oy
= ProgressBar (Horizontal)
' SeekBar e
" SeekBar (Discrete) textSize 24sp
QuickContactBadge e
Component Tree textColor sttr/textColorT
activity_main (Relativel:
'ty textStyle BIT
e
textAlignment EE=2d

View all properties .=*

Design | Text

Click on the TextView in the Component Tree to make our TextView active.
You will see a Properties window appear on the right. This is a convenient
place to change some of the attributes of a widget. In the box marked “text”
on the right, click it and enter “Enter Weight” into that field. Down where it
says “textSize,” select “24sp” to make the text larger. Also select the bold icon
where it says textStyle. This completes the look of our prompt. You can see
the changes we have made on the graphic display in the middle of the dialog.
The text now says “Enter Weight” and the text is larger and bold. You are
starting to see the benefit of object-oriented programming. This TextView was
a widget that was already created. We can use it and customize it without
having to write any code. We just changed some of the available properties
and we have the TextView we want. This is a lot easier and quicker than
having to write all the code to make these things happen.

Now let’s add the input box.

We want the user to be able to input their own weight into the program so we
need a widget called EditText. This component handles input from the user

35

and allows us to retrieve the input in our programs. From the widget menu,
click and hold to drag a Number (Decimal) widget. As you drag widgets onto
your Ul the software will give you guides to show you where you are relative
to the borders of the screen and other widgets. When we looked at the text in
the file activity_main.xml there was a widget called RelativeLayout. That is
what you are dragging widgets onto. It will handle writing the code for the
placement of widgets. Drop the EditText on the screen so that it is under the
TextView and flush with the left side of the screen.

Plain | ext

Password

Password (Mumeric)

E-mail
hd LT
Planet Weight
Postal Address .
Multiline Text [Enter Weightl
Time
Date
MNumber
Mumber (Signed]

Mumber (Decimal)
L= AutoCompleteTextView
== MultifutoCompleteText!

Component Tree

activity_main (Relativel:

B TextView - "Enter We

When you are done, your widget should be positioned similar to the one
shown below. If something crazy happened and the widget wound up
someplace you don’t want it, you can always grab it again and replace it where
you desire.

36

il oo
Planet Weight

Enter Weight

= = =
I]
0 B A

Now let’s set up the EditText like we did the TextView. In the Properties
section, change the ID of the EditText to edtWeight. Also, change the default
text to “150.” This will give a default value of the weight when the app is run.

@ E_i § (_S"v [Mexus 4~ 825+ (PappTheme @Languagev Dv Properties
Qzaz@m & B P
layout_width

layout_height

EditText
Tl .
o inputType
Planet Weight
hint
Enter Weight
o [style
i1 = G
singleline

selectAllOnFocus
TextView
text

F text

contentDescription
textAppearance

fontFamily

typeface

textSize
lineSpacingExtra
textColor

texdStyle

| gl
edtWeight
wrap_content

wrap_content

numberDecimal

nRolE

EH

Now add the Button. From the widget menu, grab a Button and place it below

the EditText and flush with the left side of the screen.

37

Palette = #%- I~ (B
Widgets
[AE| TextView

Button

ToggleButten
|Z|CheckBox
"‘ RadicButton
Av CheckedTextView
Spinner
= ProgressBar (Large)
= ProgressBar
= ProgressBar (Small)
= ProgressBar (Horizontal)
' SeekBar
1 SeekBar (Discrete)
QuickContactBadge

Component Tree

activity_main (Relativel:

[Ab| textView
edtWeight [EditText]
button

Properties
D btnCalculate
layout_width wrap_content

layout_height
Button

style

background
backgroundTint
statelistAnimator
elevation
visibility

onClick

TextView
text

text
contentDescription
textAppearance

fontFamily

wrap_content

1

i O-

25~ OAppTheme @Languagev D'

OQx=E@HE @

: Mexus 4~

TRoon
Flanet Weight

Enter Weight
150

=
11 ourron [

When you are done, it should look
similar to the above layout.

Now, edit the Properties of this Button
widget.

Change the ID to btnCalculate, and the
text to “Calculate.” You can leave the
other properties with the default values.

Again, you can see these changes in the
graphical screen to ensure you are
making the changes you desire.

Most widgets have the properties
layout_width and layout_height. These
define how the widget will display on the
screen. If you select wrap_content, the

widget will size itself to fit the content of the widget. If it is set to

match_parent, it will expand to fill the parent widget it is in. We will use that

in our last widget that we will add.

38

Add a TextView widget from the Palette to the screen so it is placed below the
Button we just created and is flush to the left.

Palette E- 2 i @ E!] G [MNexus 4~ 25+ OAppTheme '@Languagev Dv Properties | B
Widgets O==@E ¥ @ o BtOutput
Ab| TextView
Button
ToggleButtan layout_height wrap_content

layout_width match_parent

+| CheckBox TextView

2 cheas *how
adioButton Planet Weight -
A+ CheckedTextView

Enter Weight
150

F text
Spinner

= ProgressBar (Large) contentDescription

= ProgressBar Ty textAppearance

= ProgressBar (Small)

& 5 fontFamily
= ProgressBar (Horizontal)

+ SeekBar
1 SeekBar (Discrete)
QuickContactBadge

typeface
textSize

lineSpacingExtra

Component Tree textColor

activity_main (Relativel: textStyle BIT

Ab] textView
edtWeight (EditTex]
btnCalculate (Buttor

Ab) tetQutput (TextView

textAlignment E===4F

View all properties *

In the Properties, change the ID to txtOutput and the layout_width to
match_parent. Notice how the TextView now spans across the entire screen.

This completes all of the Ul elements we said we needed. Save your work by
selecting File->Save All from the menu or by clicking the Save icon on the
menu bar.

Let’s run our app to see what this looks like and what capabilities these
widgets have already added to our app.

Click the Run icon on the menu bar (the green triangle).

As before, you will be asked what to run this app on. Select the emulator we
created before (the Nexus 5) and run the app.

After a while of compiling and loading the emulator, you should see your app
displayed. Play around with the widgets. Notice that you can press the button
but it doesn’t do anything. When you click on the EditText box, an online
keyboard comes up where you can enter a number. Notice, since we selected
a Number (signed) as the type of EditText, the number keypad comes up to

39

edit instead of the entire keyboard. You can also change the number in the
EditText. This is a lot of functionality without typing a single line of code. But
we want our app to do something. Close the emulator and switch back to
Android Studio. We will now start writing code to make our app work.

Write Code to Make Things Work

We finished our Ul. Now it’s time to write some code. In Android Studio, on
the file navigation tab select the MainActivity.java file.

File Edit Yiew Mavigate Code Analyze Refactor Build Run Tools VCS Window Help

OHO % [Al !« A [[Zapp~| P % [g 2L 7
PlanetWeight app src main java com example subsystem planetweight -~ = MainActivity
" Android - @ = | #- |+ | @ activity mainxml X | (€ MainActivity java X
E app pa-clage com.example.subsystem.planetweight;
= manifests
= java import ...
com.example.subsystem.planetweight . . . L
v <« public class MainActivity extends RAppCompatRetivity |
i < MainActivity
8 com.examplesubsystem.planetweight (androic BOverride
= com.example.subsystem.planetweight (test) | of protected void onCreate (Bundle savedInstanceState) |
i res super.onCreate (3avedInatanceState) ;
drawable getContentView(R.layout.activity main);
E layout) '
S mipmap

values
~ .
=" Gradle Scripts

The first thing we need to do is get our code to recognize the widgets we just
placed in our Ul. We do this by establishing names that represent these
components. The choosing of names during program is important because it
helps us know what we are dealing with when we program. If we called our
button “A” and our TextView “B,” later in the program we might forget which
is which and spend time finding where we assigned the name to know which
was which. Instead, it is good to come up with naming conventions so that you

will recognize the widget by its name.

In Java, when we create a Variable Name to represent our Button, it has to be
the same type as our Button. So we will define the name of our Button as
btnCalc. It is defined with the following line of code:

Button btnCalc;

40

This line says “We want to create a variable of type Button and we want to
give it the name btnCalc.”

This command reserves a place in memory for our button. We haven’t
assigned our button to this variable yet, but we are getting to it.

Add that code to the MainActivity.java file right after the MainActivity
declaration. You can see this location in the figure below.

package com.eXxample.subsystem.planetweight;

import ...

| ? android.widget.Button? Alt+Enter 51V1EY extends ipplompathctivity {

&l protected void onCreate (Bundle savedInstanceState) {
super.onCreate {savedInstanceState) »
setlontentView (R. layout. activity main);

1

Here, we are going to witness some of the power of Android Studio and why
Integrated Development Environments (IDE) are so convenient.

Type in the text “Button.” You will see that the text will turn red. This is the
IDE telling you there is a problem. Right now, our project doesn’t know
anything about what a Button is. We need to import a definition file. You can
see in the figure above that the IDE is recommending a fix to the problem. The
blue popup box with the question mark is showing a probable solution. If we
hit the Alt key on our keyboard and the Enter key at the same time, the IDE
will load the definition file for us and clear the error. If you don’t see the blue
box, click on the word “Button” and you will see an options box that will let
you load this same definition file.

Where is that definition file?

If you look a little higher in the code area, you will see a section called
“import...” This area imports pre-built code that we use in creating objects like
the Button. If you click the plus sign next to the “import...” you will expand
that section to see some of the things we are importing. Of note, the latest
import on the bottom is our Button widget.

41

< activity_mainxml % | (£ MainActivity java *

package com.example.subsystem.planetweight;

import android.support.v7.a2pp.ipplompatActivity;
import android.os.Bundle;
import android.widget.Button;

& public class Mainfctivity extends Applompatictivity |

Button

& protected void onCreate (Bundle savedInstanceitate) |
super.onCreate (savedInstanceState) ;s
setContentView (R.layout.activity main);

That import has all of the code our button uses to run and allows us to define

things as Buttons. Finish typing in the name of the button so the final line
should look like:

Button btnCalc;

All of our command lines in Java end in a semi-colon.

Let’s add the other two variables we need in our program.

Below the Button definition add the other two widgets, and do the same

procedure as above to add the definition files. When you are done, it should
look like the following:

42

package com.example.subsystem.planetweight:

import android.support.v7.app.ApplompatActivity;
import android.cs.Bundle:

import android.widget.Button;

import android.widget.EditText;

import android.widget.TextView:

<@ public class MainActivity extends Applompatlctiwvity {
Button btnCalc;

g TextView txtOutp
EditText edtWeight;

&l protected void onCreate (Bundle savedInstance3tate) |
super.cnCreate (savedInstanceltate);
setfontentView (R.layout.activity main);

Note how the variable names we just added are light gray. The IDE will color
things light gray if they are not being used. Since we haven’t done anything
with these, they are gray. What we need to do now is assign them to our
widgets. Let’s start with the Button.

Go down to the section of code after the onCreate function. This is the section
of code that is run when the activity is created. So this is where we want to
assign our widgets to their variables.

To do this, we are going to use a function that looks up the ID of our button.
The function will look like the following:

btnCalc = (Button)findViewByld(R.id.btnCalculate);

What is happening is we are assigning our Button variable “btnCalc” to the
actual Button we dropped in the Ul. We find this button by looking it up with
the findViewBylID function. As you start typing this line in your code, you will
notice that Android Studio will anticipate what you want based on the context
of where you are in code. It can speed up entering programming dramatically
and also prevent you from making spelling or capitalization errors. As you type
the above line in, when you get to the R.id... section you will see the following:

43

Button btnCalc;
TextView tx
EditText ed

protected woid onCreate (Bundle savedInstanceState) |
super.onCreate (savedInstanceState) ;

setContentView (R. layout.activity main);

btnCalc = {ButtanfindViewById{gaig.h:

ﬁf activity main int
) & btnCalculate int @
1 £ % edtWeight int
! 5 B textview int
%0 % txtDutput int
class
inat
instanceof b

As you type, helpful boxes will show up with these suggestions for
automatically completing your typing. In this case, when you type “R.id.” you
will then see the IDs of the components in your app. In this case we want to
select the btnCalculate because that was the ID we gave the button we placed
in our Ul. Whenever the IDE suggests something, you can scroll down the list
and click the selection or hit the enter key and the text will automatically be
filled in for you.

Type in the other variable assignments:
txtOutput = (TextView)findViewByld(R.id.txtOutput);
edtWeight = (EditText)findViewByld(R.id.edtWeight);

When you are done, the whole entry should look like the following:
pukblic class Mzinfictivity extends ApplompatActivity |

Button btnCalc;
TextView txtOutput;
EditText edtWeight:
protected void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState);

getContentView (R. layout.activity main);

bktnCalc = (Button)findViewByld(R.id.btoCalculate);
txtOutput = (TextView) findViewById (R.id. txtOutput);
edtWeight = {EditIext)findViewById{R.id.edthéight)4

44

Now that we have declared variable names and attached our actual widgets to
them, we can interact with our widgets through these variables. We can set
properties like color, text, and size by writing code to manipulate them. If you
place a widget and are not going to change anything about it (like the text box
“Enter Weight” on our Ul) then you can just set these when you design the
widget. If you need to interact with them in code (like our Button, EditText,
and output TextView) you need to assign variables to them so you can have
access to their properties during run time.

When we ran our program, we saw that the EditText had all of the
functionality we needed. We could enter and change the weight value in that
box. We have the variable assigned to it so we can retrieve that weight value
in our program. But our Button didn’t do anything. We need to enable our
program to sense when the button is pressed. Luckily, this is a standard
function in Android so we can take advantage of the fact that there is a
method in place to sense screen touches. We need to implement this in our
code.

In your code, up where the MainActivity is defined, we are going to add an
implementation to sense screen clicks. After the term “AppCompatActivity,”
start typing the word “implements.”

axtends ApplompatActivity im]::l{

lements

Again, you should see that Android Studio is predicting what you want. When
the little blue box shows up with the suggestion “implements,” click it or press
Enter to accept it. The method that we want to implement is called
OnClickListener. This is a piece of code that looks for touches on the screen
and reports them to your program.

After the word “implements” start typing the term OnClickListener.

Again, you won’t get far before Android Studio suggests just what you are
looking for. When you type enough to see OnClickListener show up in the
suggestion box, click it or hit Enter to add it to the line of code.

45

Retivity implements Oni
InClickListener (android.view.View)

tanceState) [
in);
.btnCalculate) ;

R.id. txtOutput)
R.id.edtWeight) ;

When you are done, you will see the method added to the line. But there is a
problem.

There is a red underline that shows there is a problem on this newly created
code. It is ok. We expect it. We just told the program to implement a method.
That method needs to communicate screen touches to our program. But we
haven’t done anything to handle this communication. The red line is there to
remind us that we need to implement this missing method. In fact, Android
Studio will tell us this exact thing. If you click on the line, you should see
something similar to the figure below.

£ public class MainActiwvity extends AppCompatictivity implements View.OnClickListener{

Class 'MainActivity' must either be declared abstract or implement abstract method ‘onClick(View)' in 'OnClickListener’
| TextView txtOutput:

What this is telling us is that we just added an implementation
(OnClickListener) but we didn’t add a required method (onClick(View)). If you
look over to the left on the line, there is a small drop down box. If you expand
it, it will present you with some options to correct the problem.

import android.widget.TextView:

L public class Mainkectivity extends AppCompathctivity in

* Implement methods

@ Make 'MainActivity' abstract

5 Create Test

5 Create subclass

5 Insert App Indexing APl Code
5 Make package-local

getContentView (R.layout. activity main);

af

undle savedInstanceitate)
stanceState)

46

Click on the option “Implement methods” to add the required method to your
program. When the dialog pops up with the list of methods, select the onClick
method (it is the only method there) and click OK.

1 Select Methods to Implement >

allll T =
Z e X T

&L android.view. View.OnClickListener
w) & onClick{v:View):void

(] Copy JavaDoc

Insert @ Owverride m | Cancel |

Again, Android Studio to the rescue. Suddenly, the error is clear and a small
code segment has been added to the bottom of your MainActivity file.

T e
R Tl i i I o

¢ Ppublic wveoid onClick(View v} |

This is the code that runs when the screen is touched. The information the
screen sends to your program is what “View” was actually clicked. A View is
any widget or layout that can be interacted with on your screen. You may have
noticed that a text box is actually called a TextView. The text box is actually a
View that can be clicked or dragged and dropped or some other operation.
The onClick method will allow us to determine which object was clicked so
that we can do different things for different objects.

47

Now, we need to tell our program that we want the OnClickListener to listen
for the Button to be clicked. We do this by registering our Button with the
OnClickListener.

txtOutput = (TextView) findViewById(R.id. txtOutput);
edtWeight = (EditText)findViewBvId(R.id.edtWeight);

btnCalc. sel:L

@ B getOnClickListener (OnClickListener 1)

1 fin setText (CharSequence text) void

N |- sethccessibilityDelegate (RccessibilityDelegate delegate) vaid

of p;biiz m sethccessibilityLiveRegion {int mode) volid
m setdccessibilityTraversalAfter (int afterld) voaid

} m sethccessibilityTraversalBefore (int beforeld) vaid

} m sethActivated (boolean actiwvated) volid

m setAllCaps (boolean allCaps) voaid

Back up in your code where you defined the widget variables, add the code:
btnCalc.setOnClickListener(this);

Again, Android Studio will anticipate what you want and you will eventually
see the suggestion to complete this line.

This line of code tells the OnClickListener to “listen” for our Button to be
pressed and then run the code in onClick when it is pressed.

So, we currently have an app that has a Button that can be clicked and report
it’s clicking to our program. We have an EditText to get the weight information
from the user. And we have a TextView to display the results. Let’s write the
code to calculate the weight on Mercury and display it to the user.

Enter the following code in the onClick method at the bottom of the file.

double dblWeight;
dblWeic Double.valuelf (edtWeight.getText () .toString ()} ;

The first line creates a variable called dblWeight of type double. The keyword
double represents a number that can be very large and have a decimal. It may
be overkill for our use, but we are not concerned with conserving memory.

48

Double actually means double precision and takes twice as much memory to

store as a float variable. Below are some of the number variable types in Java.

Variable Type Number of bytes of Number Range
Memory
byte 1 -128 to 127
short 2 -32,768 to 32,767
int 4 -2,147,483,648 to 2,147,483,647
long 8 -9,223,372,036,854,775,808 to

9,223,372,036,854,775,80

float 4 7 digit decimal number

double 8 16 digit decimal number

The first 4 variable types hold a signed integer number. The last two are for
decimal numbers.

The next line of code takes the text that is in our EditText (edtWeight) and
places it in this long variable we created (dblWeight). We are not allowed to
assign different type values to variable so we have to convert our text to a
double. When we use the function Double.valueOf(something), we convert
the something in parenthesis into a Double. This then allows us to assign it to
our variable.

Remember that we set up the EditText variable so we could access its
properties. When we use edtWeight.getText() we are running a function
(getText) that is already built into our widget that returns the text in the
EditText text field.

Now that we have retrieved the text, converted it to a double number, and
assigned it to our double variable, we can use this to calculate the weight on
Mercury.

To get the weight on Mercury, we just need to multiply the weight stored in
dblWeight by the number 0.3772. That is pretty straight forward. What is not
so straightforward is how to present this information to the user. We want it

49

to come with a label to identify it since we will eventually be displaying all of
the planet weights. Enter the following line of code on the next line.

String outPut = String.format("Mercury: %.1f Ibs", dblWeight * 0.3772);

The first word on the line is String. It is another variable type, but instead of a
number, a String holds information that can contain numbers, letter, and
symbols. In other words, it holds text. Strings have a lot of built in functionality
so they are often good to use to get data ready to display. The next word
(output) is our variable of type String that we will use to get our output ready.
You may wonder why we can’t just assign our double number directly to a
String. We discussed this already. You cannot assign different type to each
other. You must use some sort of conversion. To convert the String to the
double above, we used the Double.valueOf() function. Here we are going to
use another useful String function. The format function is a very versatile
function that lets us combine words and numbers into a final output suitable
for our application. It will also allow us to format the number the way we
want. We can specify the number of decimal places to display numbers and
whether to have leading or trailing zeros, and many other options. The format
we ask this function to place our data in is held in the first part of the function:

We want to format the output so it will have the name of the planet followed
by the weight expressed to 1 decimal point. The following format string will do
that for us.

"Mercury: %.1f lbs"

When the string contains text, it will just be copied to the output as is. When
the format encounters a %, it knows that it will be inserting a number at that
point. When we want to insert things in our output, we can use the following:

%s —add a string
%d —add an integer
%f —add a real (floating point) number

So, our line includes the term %.1f which adds a floating point number to the
output. The .1 in between the % and the f tell it to add the number to 1
decimal point. The last part of the format string just adds the text lbs.

50

The format string is asking for a floating number so the second part of the
function is a list of the data the format requires. We just formatted one
floating point number so we just need to include one in the format function. It
just so happens that we can do the multiplication we need in that variable list
itself. The number we want to display is the weight (dblWeight) times 0.3772.
So we just place that in the format list. The function will do that calculation
before it applies the number to the format and sends it to the output. Again,
the whole format line is:

String outPut = String.format("Mercury: %.1f Ibs", dblWeight * 0.3772);

Now that we have a String (ouPut) that holds our desired output text, let’s
apply it to our output widget.

txtOutput.setText(outPut);

Here again, we are using our variable (txtOutput) that we assigned to our
TextView. We are accessing the setText() function by using a period. That
period allows us to access variables and functions associated with the widget
type. The setText function expects a String to display. We send our String
variable outPut.

public wvoid onClick{View w) |

double dblWeight:
dblWeight = Double.wvalueOf (edtWeight.getText () .toString()) -

String cutPut = String.format("Mercury: %.1f 1lbs", dblWeight * 0.3772);
txtOutput.setText (cutPut) ;

}

That is all of the code needed in onClick() to make a functional program.

Save your work and run this app as before. Now when you click on the Button,
you will calculate the weight on Mercury and display it on the output
TextView. Change the weight in the EditText and click the button again. This is
pretty nice, but you can probably see some things you want to change before
you offer this on the app store.

51

Android Emulator - Mexus_5_AP1_24:5554

in
Planet Weight

Enter Weight

175

CALCULATE

In the next section, we will look at completing this app to display the other
planets, change the appearance to look more professional, and create an icon
for the app.

Well done making it to this point. There is a lot of information here. Don’t
worry, this is an introduction. If you see that an app is made up of a graphical
layout and some Java code, you already have a good feel for Android
programming.

Let’s look at some modification to make this a great app.

52

Add the other planets

Let’s include the rest of the planets in our app. Go back to the
MainActivity.java file and go down to the onClick function where we
formatted the text for the planet Mercury. Add the other planets in.

public void onClick(View v) |

double dblWeight;
dblWeight = Double.valueOf{edtWeight.getText().toString()):

-
-1

String outPut = String. format("Mercury: %.1f 1bs", dblWeight * 0.3

2):

putPut += String.format{"\nVenus: 2.1f 1bs", dblWeight * 0.304);
gutPut += String.format({"\nMars: %.1f 1bz", dblWeight * 0.3783):
outPut += String.format{"\ndupiter: ®.1f 1bs", dblWeight * 2.527);
putPut += String.format{"\nSaturn: %.1f 1bs", dblWeight * 1.064);
gutPut += String.format("\nUranus: %.1f 1bs", dblWeight =* 0.8858);
outPut += String.formab{"\nMeptune: &.1f 1bs", dblWeight * 1.137);

txtOutput.setText (outPut) ;

1

You can see what we did. We assigned the original text to the variable ouPut.
The next line then adds the text for the next planet to the output variable. You
can see in the format string that we add a “\n” before each planet’s name.
This is the code for a line feed. This moves the printing of text to the next line.
It is an ASCII code that is used by the computer to format the printing. You will
see that it itself does not get printed. It is a simple way to add a line feed to a
group of output text.

The conversion factors for the other planets are:
Venus — 0.904

Mars - 0.3783

Jupiter — 2.527

Saturn — 1.064

Uranus — 0.8858

Neptune —1.137

53

Notice also that we lined up the text in the format string to give us a neater
look when they print. That sounds good, but the font we have is not a fixed
size font so if we don’t change that, the output will never be lined up right. Go
to the activity_main.xml file on the navigation tab to open the Ul editor.

Click on the txtOutput widget on our layout. This will bring up the set of
properties for us to edit.

layout_width match_parent

layout_height wrap_content
TextView
text

hd L2
Planet Weight

Enter Weight # et

150 contentDescription
textAppearance

CALCULATE

fontFamily mcncspacel

H = B

typeface

textSize 18sp
lineSpacingExtra

textColor

textStyle BIT

textAlignment 1= E = = =

Vz

Under the property fontFamily, choose the font “monospace” as the selection
and change the textSize to 18sp. This will give us a given space between the
planet name and weight and also display it a little bigger.

Save and run your app.

Enter Weight This looks pretty good. But let’s
150 customize it a little more. Let’s change

the background color. And let’s move
SALCULATE the output display a little to the right.
And let’s add a custom icon.

We'll take these changes one at a time
so you can see how to do each one.

54

Create a Custom Color

To change the background color, we need to change the color property of our
background. Open the file activity_main.xml to access the app layout.

@ activity_mainxml x | (€ MainActivity java *

Palette | #- - |B § &~ [Nexusa- s~ (PappTheme @language- [J- Properties o | e

Widgets Q@ E 4 B o activity_main

|| TextView

| Button layout_width match_parent

— ToggleButton layout_height match_parent

|Z|Cha(anx

A CheckedTextView

Spinner Enter Weight
= ProgressBar (Large) 150
= ProgressBar -

= ProgressBar (Small)

= ProgressBar (Horizontal)
* SeekBar

1 SeekBar (Discrete)
= QuickContactBadge

Component Tree

Click on the white space on the left layout picture (left black arrow). This will
select the background widget (which is our Relative Layout). This will call up
the properties for that widget in the right panel. By default, this is only a short
list of the most common properties that you may want to change. The icon in
the top right (pointed to by the right black arrow) opens up the detailed list of
properties. Click the icon to shift to the detailed list.

o
w75+ (PappTheme Eianguage- [J-~ Properties | B) =
Cusiny TR R T e =
Pax®@H ¥ H Theme
elevation
context cem.example.subsystem.pla

accessibilityLiveRegion
ﬂ accessibility Traversal Afte
accessibilityTraversalBefc
actionBarMNavMode
addStatesFromChildren [=]
alpha
alwaysDrawnWithCache [=]
animatelayoutChanges [=]
animationCache =]
| A
backgroeundTint

backgreundTintMede
clickable =]

55

Go down the list until you come to the background property. Click on it to
bring up the selection box. The first button to the right allows you to choose
the color from all the colors available to your program. Click on it (it is the
button with ... on it).

This brings up the color dialog. The far left column shows the different places
that color information is contained in the project. Click on the item “Color.”

® Resources x
7" N
'Q‘ J H Add new resource ¥
* Project
iz Mame: heolo_green_dark | Defau\tn
Tl . colorAccent
I} . colorPrimary
B . colorPrimaryDark
i T android
. background_dark
background_light
. black
darker_gray
. holo_blue_bright
@andreid:celor/hole_green_dark
. hole_blue_dark 0 #f663900
. holo_blue_light
holo_green_dark

This will bring up choices from various places in the project. The first section
has the colors you have defined in your app. The three listed were placed
there by the wizard when we started out. The next section shows colors
available that are standard to the Android system. Scroll down and select the
holo_green_dark color and click OK.

The background of your app now has a pretty green color.

56

accessibility

accessibility

Planet Weight

accessibility
actionBz
addStatesFr
= alpha

alwaysDran
ntal) animatelay
animationC

backgrount
backgrount
clickable
clipChildrer
clipToPadd
// contentDes

tivelz

it T ext!
Let’s say you are not a fan of green. Here is how to add a custom color to your
project.

Back on your project page, in the left project navigation window, expand the
app folder, then the res (resources) folder, then the values folder. You will see
a couple of files there. Double-click the colors.xml file. This will bring up the
custom project colors.

bOHGO O AR <« N ([Eapp - P & 5 & C K & L&|?
PlanetWeight app src main L= res values = @ colorsxml
Android - € &= | #- 1* | © activity_mainxml ¥ | & colorsaml % | () MainActivityjava ¥
% app
i ifest:
- manl ests |<?ml version="1.0" encoding="utf-8" 2>
Java <resources>
dres | | <color name="colorPrimary">#3F51B5</color>
% drawable | <color name="colorPrimaryDark">#303F9F</color>
£ layout n <color name="colorAccent">#FF4081</color>
= mipma </resources>
. pmap
values
< colorsxml
2 i ,
2 imensxml (2)
] & stringsaml

@ styles.xml
% Gradle Scripts

You can see the current entries. These were the colors available in the color
dialog when we changed the color of the background. If you look at how the
color is defined, it is given a name and then a hexadecimal code that
represents the amount of primary colors that are used to create it. There are
many online resources that will generate the desired color. We are going to
take advantage of Android Studio’s color picker. After the last color entry, add
a new custom color. Call it colorNiceBG and assign it a value of #FFFFFF.

57

<?mml version="1.0" encoding="utf-8" 2>

<resources>
| <color name="colorPrimary">#3F51B5</color>
| <color name="colorPrimaryDark">#303F9F</color>
| <color name="colorAccent">#FF4081</color>
<color name="colorHiceBG">4FFFFFF</color>
</ resources>

You will see that a small box of the color shows up in the column to the left.
The color you entered was white.

Now go back to the layout, click on the background, and find the background
property in the list as you did before. Click the button with three dots to open
the color dialog. Now you see our custom color listed in the project colors.
There is also a color picking tool on the right.

® Resources %
@) @D Add new resource ¥
Drawable ~ Project Name | colorMiceBG

Color . colorAccent Saving this color will override existing resource colorNice8G.

String .mwp"mw (:;ﬁom(olor CLOSEST MATERIAL COLOR

Style
.m\annmaryDark

~ android

.ha:kgmunu,nark

background_light

Ac| 255 |Re[195 |G 158 | B:| 194 ARGE“ #| FFC39EC2

.b\ack
darker_gray
holo_blue bright
.hnln,nlue,uark
.hulu_hlue_\ight
.hulu_green_dark
holo_green_light L= —‘

hol dark
olo_orange_darl * Device Configuration

o =y

Here, you can create any color you want and it will update our custom color
with the new value. Move the slider along the rainbow strip at the bottom to
find a base color you like. Then grab the small white dot in the upper left

58

corner and drag it to the exact shading you want. In the above image you can
see we chose a purple base color and then lightened it so the black text in our
app shows up well. The color you are currently selecting is shown in the box
under the words Custom color. Find a color you like and select OK at the
bottom of the dialog.

After you do, you will see that your background now has a truly custom color.

hd L2
Planet Weight

Enter Weight

150

CALGULATE

If you look back at the colors.xml file, you will see that Android Studio has
updated our color with the new value. You can see the sample of it to the left
of the line of code that defines it.

< res values = colorsxml

1
m
o

Ak

- I+ | @ activity_mainxml % | = colorsxml % | (€ MainActivityjava %

<7l verszion="1.0" encoding="utf-8" 7>
<TESOUrcesy

| | <color name="colorPrimary">#3F31E5</color>
| <color name="colorPrimaryDark">$303F9F</color>
| <color name="colorAccent">#FF4081</color>
<color name="colorNiceBG">#c3%c2</color>
</resources>

With this method, you can create custom colors for all of the components in
your app.

59

Add Padding to an Object

The second thing we want to do to continue to fine tune our app is to add
some padding to the output display box to give it a feel of being more
centered on the display. There are a couple of ways to do this. But we will add

some padding to the widget. Padding is space that you can add to the inside
boarders of a widget.

In the layout file, click on the outPut TextView widget. That will bring up the
properties.

* | 2 colorsaml ¥ | (£ MainActivity.java *

-1 B ECE O Onexussr mizs- (Papptheme Elanguager [J- Properties ey
G) 13% @ M= ‘ n id bdQutput
layout_width match_parent
layout_height wrap_content
Layout_Margin [7, #dp, 2, 7]
Padding [, 40sp, 7.7, 7]

Erter Weight padding
=

paddingBottom
paddingEnd

paddingLeft

paddingRight

rge)

Relativel :
(TextView

paddingStart
paddingTop

Theme
(EditText elevation

e (Buttor, fontFamily menospace

Scroll down the list of properties until you get to the Padding property. Click

the triangle to expand it. You will see all of the different places you can add a
little padding. In the paddingLeft box, type in 40sp. This represents 40 pixels
and the “sp” is a code that uses the text scale for the size of the pixels.

Android Emulator - Nexus_5_API_24:5554

When you run the app now, you will see that the output
text looks a little more centered on the display.

Padding and Margins are ways to help format the look of
::’E::r : 55:' bs yOU UI.

Jupiter
Saturn:
Uranus
Neptune: 170.6 1bs

Now, let’s add an icon.

60

Adding a Custom Icon

When we initially created the app, the wizard assigned it a standard Android
icon. But we want our app to have a custom icon. With Android Studio, it is
easy to do this.

Y 'W' Android v B3 5= | - I | = activity_mainxml x | &
£ app Palette 3| 8- It
= manifests :
” i Widgets
java o _
[&b] TewtWiew
i Ca Android direct
E Link C++ Project with Gradle [GElels B=ihes e ISaEe
& =| File
]
T Directory
Copy Path CtrleShiftec 5 C++ Class
% Copy as Plain Text e C/C++ Source File
".S Copy Reference Ctrl+Alts Shift+C | & C/C++ Header File
) [l Paste co-v [
Find Usages ajt+p7 "™ Vector Asset
Find in Path... Ctrl+Shift«F | |4l Singleton
Replace in Path... Ctrl+Shift+R Edit File Templates...
Analyze b 'i' AIDL ,
Refactor b i Activity »
Add to Favorites b 'i' Android Auto 3
Bl mnian [l sy AWl e 3, Chif . T -E- Frlrder]

At the main screen, on the left in the project navigation pane, expand the app
folder to reveal the subfolders. Right click on the res folder to bring up a list of
options. Select New and then select Image Asset from the menu.

This will open the Asset Studio. Here, you will be able to create an icon for
your app. The program will let you choose an image, clip art, or text for your
icon. Asset Studio comes with a selection of icons so let’s use one of these.
Click on the box next to the words Clip Art. This opens a clip art selection
dialog. On the left is a list of categories to limit your search, but for now, scroll
around and look at the different clip art choices. Find one that you want to
represent your app.

61

¥ Select lcon

A
Action)
Alert
]~ ™
kg I: Communication @ G D “ ’/
Name: Content 'Y
Device ‘ * ‘.
Asset Type: Editor * E J - =]
File
Clip Art: Hardware ; I J‘ V v I‘
Image
6B sad B
Mavigation " - -
MNotification = nd
B8 &
< Toggle e &
w A B M
l...l l.o.l
‘ [| rMa —_— - s - s
These icons are available under the CC-BY license
1. Anicon wit m |m|
| |m| Cancel || || Help |

Click on your selection and then click the Next button on the bottom of the
dialog. The next dialog reminds you that you are overwriting the current icon.
Click Finish at the bottom of the screen. You now have a custom icon for your
app. Let’s take a look at it in action.

Run your app on the emulator as before. After the app starts, click the small
triangle at the bottom of the emulator screen (labeled 1 in the picture).

Then, click on the white circle with the dots in it (labeled 2 in the picture). This
will bring up a listing of all the apps on the emulator.

62

Scroll down until you see your app. Notice that the icon is the new one you
have created.

You now have a functional, customized Android app. From here, you could
continue to modify and add functionality to it or could even start a brand new
project. The appendix has some great resources to continue learning about
Android, Java, and programming concepts. Google also has a lot of
information to help you take any app you create and load it up to the Google
Play Store. See the Appendix for these sources and more.

We hope this lesson has shown you that the world of app writing is not the
domain of the professional computer programmer alone. With some time and
practice, you too can generate useful apps and post them to the app store and
even generate revenue from selling apps or servicing ads. The intention of this
lesson was to load up Android Studio, get familiar with the interface, Ul basics,
and some simple Java programming. Hopefully, you feel confident to go online
and find some more tutorials and lessons to allow you to build on what you
have learned.

63

Appendix A: Additional Resources

The best resource for Android Programming is Google’s own site:
developer.android.com
For more introduction information:

developer.android.com/training/

San Jose State University has a free course on Java programming:

www.udacity.com/course/intro-to-java-programming--cs046

Google gives extensive information on how to become a registered developer
and post apps on Google Play.

developer.android.com/distribute/googleplay/

Tutorials Point is a good site for a lot of Android programming examples:

https://www.tutorialspoint.com/android/

64

Appendix B: Loading an App on
your Android Device

This section is provided to help you load your new app on an actual Android
device. Since this is more complicated due to the variations of Android devices
and the level at which your carrier may lock your phone, it is not guaranteed
that you will be successful. That said, a lot of phones work with little effort.

The goal is to have Android Studio see your actual phone as a legitimate place
to load your app on to. To do this, the phone must be recognized by your
computer and must be able to enter developer mode.

First, you have to enable USB debugging. Select Setting->Developer Options.

Note: If you don’t see this option (it is hidden on Android 4.2 and later), go to
Settings->About Phone and find where it lists the Build number. Tap this area
at least 7 times. When you return to the Settings menu, Developer Options
will now appear.

Make sure you have enabled USB Debugging in the Developer Settings. Plug
your phone into your computer. If your computer has a compatible driver,
your phone will be recognized after the driver is loaded. If your phone displays
messages, click the options to allow access.

If all goes well, go to Android Studio and click to run your app. The normal
Emulator window will pop up to ask you what you want to run the app on.
Your phone should appear on the top under Connected Devices. If it does, just
select it. Android Studio will load the app on the phone.

65

% Select Deployment Target

Connected Devices
@ HTC HTCONE (Android 5.0.2, API 21)

Available Virtual Devices

Mexus 5 AP| 24

| Create Mew Virtual Device Don't see your device?

[] Use same selection for future launches m | Cancel |

If you have any issues doing this, you may need to load drivers or change a
configuration. See the following site:

developer.android.com/studio/run/device.html

for more complete information on troubleshooting problems.

66

Appendix C: Code Listings

Here is a listing of the code you should have in the Java and layout files:

MainActivity.java
package com.example.subsystem.planetweight;

import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;

import android.view.View;

import android.widget.Button;

import android.widget.EditText;

import android.widget.TextView;

public class MainActivity extends AppCompatActivity implements View.OnClickListener({

Button btnCalc;
TextView txtOutput;
EditText edtWeight;

@Override

protected void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState);
setContentView(R.layout.activitz_main);

btnCalc = (Button) findViewById (R.id.btnCalculate) ;
txtOutput = (TextView) findViewById (R.id.txtOutput) ;
edtWeight = (EditText)findViewById(R.id.edtWeight) ;

btnCalc.setOnClickListener (this) ;

}

@Override
public void onClick (View v) {

double dblWeight;
dblWeight = Double.valueOf (edtWeight.getText ().toString());

String outPut = String.format ("Mercury: %.1f 1lbs", dblWeight * 0.3772);
outPut += String.format ("\nVenus: $.1f 1lbs", dblWeight * 0.904);

outPut += String.format ("\nMars: %$.1f 1bs", dblWeight * 0.3783);
outPut += String.format ("\nJupiter: %.1f 1lbs", dblWeight * 2.527);
outPut += String.format ("\nSaturn: $%.1f lbs", dblWeight * 1.064);
outPut += String.format ("\nUranus: %.1f lbs", dblWeight * 0.8858);
outPut += String.format ("\nNeptune: %.1f 1lbs", dblWeight * 1.137);

txtOutput.setText (outPut) ;

67

activity_main.xml

<?xml version="1.0" encoding="utf-8"?7?>

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:id="@+id/activity main"
android:layout_width="match_parent”
android:layout_height="match_ parent"
android:paddingBottom="@dimen/activity vertical margin"
android:paddingLeft="@dimen/activity horizontal margin"
android:paddingRight="@dimen/activity horizontal margin"
android:paddingTop="@dimen/activity vertical margin"
tools:context="com.example.subsystem.planetweight.MainActivity"
android:background="@color/colorNiceBG">

<TextView
android:layout_width="match_parent”
android:layout_height="wrap_ content"
android:layout_below="@+id/btnCalcu1ate"
android:layout_alignParentLeft="true"
android:layout_alignParentStart="true"
android:layout _marginTop="41ldp"
android:id="Q@+id/txtOutput"
android: textSize="18sp"
android: fontFamily="monospace"
android:paddingLeft="40sp" />

<TextView
android:id="@+id/textViewl"
android:layout_width="wrap content”
android:layout_height="wrap_ content"
android: text="Enter Weight"
android: textSize="24sp"
android: textStyle="normal |bold"
android:layout_alignParentTop="true"
android:layout_alignParentLeft="true"
android:layout_alignParentStart="true"
android:layout_marginLeft="17dp"
android:layout marginStart="17dp" />

<EditText
android:layout_width="100sp"
android:layout_height="wrap_ content"
android:inputType="numberDecimal"
android:ems="10"
android:id="@+id/edtWeight"
android: text="150"
android:layout_marginTop="16dp"
android:layout below="Q@+id/textViewl"
android:layout_alignLeft="@+id/textViewl"
android:layout alignStart="@+id/textViewl" />

<Button
android: text="Calculate"
android:layout _width="wrap content"
android:layout_height="wrap_ content"
android:layout_marginTop="17dp"
android:id="@+id/btnCalculate"

68

android:layout below="Q@+id/edtWeight"

android:layout alignLeft="@+id/edtWeight"

android:layout alignStart="@+id/edtWeight"
</RelativeLayout>

/>

69

