
©2017 Subsystems

SUBSYSTEMS

Introduction to Arduino

SubsySTEM

5

Table of Contents

Arduino ... 1

Objectives ... 2

Tools ... 2

Arduino Software Load ... 5

The Integrated Development Environment 10

Menu ... 11

File Menu ... 11

Edit Menu ... 12

Sketch Menu .. 12

Tools Menu .. 13

Help Menu ... 14

Quick Access Icons .. 14

Open Sketch Tabs .. 15

Code Area .. 15

Notification Area ... 15

System Log ... 15

Board Selected ... 15

Your First (Sample) Program 16

Let’s Program ... 22

Traffic Light Code ... 25

Serial Output ... 27

Input .. 30

Adding a Switch .. 33

Using Libraries .. 37

Conclusion .. 42

Appendix .. 43

1

Arduino

Arduino (spoken Ar-dwee-no) is a computer and software company, user

community, and open-source project that produce microcontroller kits and

assembled units that connect the physical world to a small programmable

computer. Arduino was established as a completely open-source project. That

means the hardware and software designs

are free to develop, produce, and distribute.

This has made Arduino extremely popular in

the hobby (frequently referred to as Maker)

community. The company has created a

standard computer and interface, and the

community has expanded it by adding

software functionality using add on libraries.

This means, if you want to add a display to

your project, you will find many different

kinds, all with a supporting library. So rather

than having to write all code from scratch, you can import the library, hook up

your display, and write simple commands like print(“Hello”) to display text. This

means that you can get started on complex projects quickly.

In addition to the base computer hardware, the Arduino community has

produced many add on boards referred to as “shields.” These shields snap in to

the pin headers on the computer board itself and route the computer

input/output ports to various hardware on the shield.

Arduino is at the heart of many technologies used by hobbyists like mobile

robots, 3-D printing, Internet of Things, and many others. As you start to play

with this device, you will quickly realize that you are tinkering with an amazingly

versatile and powerful device with an immense support community behind it

and an internet full of easy weekend projects. So let’s go tinker.

Intro

2

Objectives

When completed with this Subsystem Module, the student will:

1) be able to explain what Arduino is and how it is used.

2) describe what is meant by a “shield” with respect to Arduino boards.

3) connect an Arduino UNO to a computer and establish a link.

4) be able to load a sample program and run it.

5) understand the different capabilities of the Arduino Integrated

Development Environment (IDE).

6) write programs that use input/output on Arduino.

7) interface Arduino with external hardware.

8) understand the basics of programming in C and C++.

9) understand what libraries are and how to use them.

Tools

To accomplish these objectives, you have a few tools at your disposal.

First, you have this curriculum guide. It will walk you step by step through the

entire curriculum that includes the text, system setup, and programming

examples.

You also have an Arduino UNO board, USB cable, electronic breadboard, and

assorted electronic parts to interface to Arduino.

3

A close up of the Arduino UNO board shows the connecting headers for the

digital and analog input and output.

4

The UNO can be powered from the USB cable or from an external supply. We

will be using the USB connection for both power and for uploading programs to

the board.

Let’s start our dive into Arduino by loading the Arduino software.

5

Arduino Software Load

We will start our setup with loading the Arduino software and making sure it is

configured properly. If you already have a current copy of Arduino on your

computer, you can skip this section.

Visit www.arduino.cc and download the latest version of the software for your

particular system. Go to the main site and click on the menu item “Software” on

the top navigation banner.

Scroll down until you find the link to download the IDE (integrated development

environment).

On the right, is a list of the different operating systems. Click on the one that

corresponds to the one you use. Opt for the full version and not the app if it is

offered.

Download this file to a place on your computer where you can find it. Windows

will normally put downloads in the “Downloads” folder.

Section

1

http://www.arduino.cc/

6

Now, run that installation program. You will be greeted with a user agreement.

If you agree with the license, click “I agree” to move on to an “Installation

Options” dialog.

The default values are good for our purposes so click “Next.”

You will then be presented with a dialog that has you choose the installation

location.

7

And again, the default value works great for us so just click “Install.”

The installation software will start loading the program and all the support files.

This installation will take a little bit to complete. At some time, you may be

presented with driver installation warnings like the following:

8

These are trusted, well know sites that develop software for the hobby

community so click “Install” to install these drivers. These will allow us to

communicate over the USB port with the UNO.

When the installation is complete, you will be presented with a final dialog.

Click the “Close” button.

If all, went well, the Arduino software and drivers are loaded on your computer.

Let’s open up that software and finish setting it up.

Find the Arduino program on your computer (from the Start icon in Windows or

the Launchpad on a Mac) and run it. You should see the following:

9

If you are presented with any other dialogs that show options for downloading

other components, you can either accept them or cancel them. Your base

software has everything we need.

10

The Integrated Development

Environment

Software development has changed since the dawn of computers. Initially,

computers were programmed memory location by memory location using a

series of switches and buttons. Then, more powerful computers and better

hardware interfaces allowed us to program the computer using the computer.

As computer complexity grew and more and more systems had computers

embedded in them, computers were then used to write programs that were for

other computer systems. This is called cross-compiling. Let’s say you wanted to

write an app that runs on an Android phone. But you want to write it on your

Windows based computer. You could write the code in a text editor, and then

send it to a small computer program (called a compiler) to convert it to the

Android system language. The resulting file couldn’t be run on your Windows

based computer, but could be transferred to the Android phone and then run.

This also opens us up to the ability to reuse code. There are some computer

programming languages (like Java) that can be written once, and then compiled

for many different platforms. The compiler does the work of taking the human

readable program and converting it to the machine specific code to run on that

platform.

But one of the biggest needs in programming is the ability to find problems with

your completed software. This is called troubleshooting (or de-bugging).

Wouldn’t it be great if there were a way to test the program out on the machine

you were writing the code on? Well, you can. A small program called an

emulator can act like the device you are developing for and run your program

locally. That means you can write your program, compile it, and run it on the

Windows laptop, even though it is going to be loaded on an Android phone.

Coordinating all this interaction, code de-bugging, and program monitoring is a

Section

2

11

piece of software called and Integrated Development Environment (IDE). An IDE

dramatically simplifies the task of writing computer software. Arduino is

programmed in an IDE. You can use your Windows, Apple, or Linux computer to

write programs and then compile them for Arduino. You can use the same

software to download the compiled programs to the Arduino hardware and can

even use it to monitor the hardware while it is running. Let’s take a tour of the

Arduino IDE.

Above shows a breakdown of the different areas of the IDE. Let’s look at each

area.

Menu

The menu is the standard place for you to access all the functionality of the

program. Note: Arduino refers to a program written in the IDE as a sketch.

File Menu

New – creates a new Arduino sketch.

Open… - allows you to open a saved sketch.

Open Recent – this gives a convenient listing of the most recent sketches

for you to select.

12

Sketchbook – This is a listing of all the sketches you have already saved.

Examples – this gives you access to the examples that come with the

Arduino software as well as others that come with additional libraries you

load.

Close – this closes the current sketch. It will prompt you to save if you

have not.

Save – this will save the current sketch under the previously saved name.

If it is a new sketch, you will be prompted to give it a name.

Save As – this allows you to save the current sketch as a new name.

Page Setup – this allows you to change the page characteristics. This is

important if you will be printing your sketch.

Print – allows you to print the current sketch.

Preferences – this open a dialog that allows you to modify preferences

and other setup related information.

Quit – this exits the program. You will be prompted to save your work if

you have not.

Edit Menu

The Edit menu selection has all the normal editing functions like cut, copy, paste,

undo, etc. Of note are the two copy options (Copy for Forum, Copy as HTML).

Since Arduino has such a large following, you will find many times you may want

to post your code to a forum or on a webpage. These two options automatically

format the code so it will have a standard appearance when pasted into these

destinations.

Sketch Menu

Verify/Compile – this selection compiles your sketch into a form ready

for download to your Arduino hardware. You will see progress in the

Notification Area and the System Log area. This is also where you will see

if the compile was successful or if there were errors.

13

Upload – this will take a compiled sketch and upload it to connected

Arduino hardware. If the software needs to compile the program first, it

will do that.

Upload Using Programmer – this will upload a sketch to the Arduino

hardware and overwrite the onboard software that communicates with

the IDE. This is an advanced option for programmers who need to use

the entire memory of the Arduino and will not need to communicate

with the IDE anymore. DO NOT use this option to download programs.

Export compiled Binary – this will save the compiled program so you can

have a local copy. This is useful if you want to back up the code or want

to use another programmer to load it onto an Arduino.

Show Sketch Folder – this opens the file explorer on the folder where

the current sketch is located.

Include Library – this allows you to select a library to add to your code. It

will automatically add the correct “include” statement.

Add File… – this adds an existing file to the current sketch and opens it in

another tab.

Tools Menu

Auto Format – this puts your code in a standard, easy to read, format.

Archive Sketch - saves a copy of the sketch in .zip format.

Fix Encoding & Reload - fixes problems between the editor and other

operating systems character maps when you copy or load sketches from

other sources.

Serial Monitor - opens the serial monitor window for the currently

selected Port. This allows the Arduino board to receive and send data in

this window. This may reset the board (it will for your UNO board).

Board – this allows you to select the current board. The compiler needs

to know the type of board to assign correct values to things like pins,

ports, memories, and clocks.

14

Port - this contains all the serial devices available on your machine. It

should automatically refresh every time you open the top-level tools

menu.

Programmer – use this if you are using some other programmer than the

built in one that comes with Arduino (we will be using the built in one).

Burn Bootloader – a bootloader is a small program that lets the Arduino

communicate with your computer. This is what allows us to program it

directly from the IDE. If you are using a brand-new chip or if your chip

gets corrupt, you may need to download the bootloader to the chip

again. This selection allows you to do that.

Help Menu

Here you will find a lot of useful resources. Many of these link back to the

Arduino page for more information. The Find in Reference selection is context

sensitive and will use your cursor to give you help based on the command

present at the cursor.

Quick Access Icons

These are readily available icons that represent frequently used menu items.

They are as follows:

Verify/Compile

Upload

New Sketch

Open

Save

Serial Monitor

15

Open Sketch Tabs

These are tabs that select each of the sketches you have loaded. For most

applications, you will just have one tab for the current sketch you are working

on. As you use Arduino more and more, you will find that there may be standard

routines that all your applications are using. You could save them in a separate

sketch and open them in your current sketch as a separate tab. This will give you

access to all the enclosed software routines.

Code Area

This is where you will compose your code. This area has some great editor

features. It allows the normal cut and paste functions. But it also will color code

the lines depending on recognized functions and commands. This can be helpful

and makes the code more readable.

Notification Area

This space is used to convey the status of certain operations like save, compile,

and upload. It will also turn red when there is an error that requires attention.

System Log

The IDE calls different compilers and other helper applications during compiling

and uploading. This area is used to display the information returned from those

applications. Sometimes there will be extra information on errors that occur.

After compiling, this area will show the amount of memory used and the percent

of available memory for the particular device.

Board Selected

This area shows the currently selected board (set by Tools->Board:). This should

match the board you are working with. If not, select it from the menu.

16

Your First (Sample) Program

Now that you understand the basic layout of the IDE, let’s start using some of

the rich set of features it provides.

The easiest way to get started is with one of the included sample programs.

From the menu bar select:

File->Examples->01.Basics->Blink

When you open the sketch, the code will appear in the code window. The Blink

example will just load the code to blink the LED on the Arduino board. Let’s hook

up the board and get it ready to receive code. First, let’s make sure that the IDE

Section

3

17

is set to the correct board. The board included in your kit is an Arduino UNO.

From the menu, select:

Tools->Board:->Arduino/Genuino UNO

You can see from the board menu that Arduino has many variants. As you

experiment with this computer system, you may find that want more inputs and

outputs or you want to have a very small computer board that you can wear.

Arduino and many other suppliers make many different boards that fill a variety

of needs. But they can all be programmed with the Arduino IDE.

Plug the Arduino UNO into a USB port on your computer using the enclosed USB

cable. The power light on the UNO will come on and your computer will register

the new device. Now, let’s tell the IDE what port our UNO is plugged into.

Select Tools->Port->COM…

When you view the selections, there should be a port labeled COM followed by a

number. This is the reference to a serial port. Serial communication is when you

send data one bit at a time over the transmission line.

18

In the above example, the UNO shows up on COM5. Whatever COM port is

present, select it. If there are multiple COM ports, you could either select the

different ports and attempt to download the program (described below) until

you find the right port. Or you could go into your computer’s hardware section

and see which COM port the UNO is hooked up to. For most systems, there will

most likely only be one COM port.

With the IDE selected to the correct board and the communication ready, we

can now upload the Blink program to our UNO.

Select Sketch->Upload or click the Upload icon.

You will see a message in the notification area showing that the upload has

begun as well as a progress bar. After a short time, you will see that the upload

is complete and if you look at your UNO, you will see the red LED flashing slowly.

Congratulations. You have compiled and downloaded your first Arduino

program.

Let’s look at the program to start learning how to write code. The first thing you

notice is a lot of comment text. Programmers often want to place descriptions

and instruction and even copyright notices within the program. This is good

practice. You insert comments by using a “//” on the line right before the

comment.

19

// the setup function runs once when you press reset or power the board

void setup() {

 // initialize digital pin LED_BUILTIN as an output.

 pinMode(LED_BUILTIN, OUTPUT);

}

// the loop function runs over and over again forever

void loop() {

 digitalWrite(LED_BUILTIN, HIGH); // turn the LED on (HIGH is the voltage level)

 delay(1000); // wait for a second

 digitalWrite(LED_BUILTIN, LOW); // turn the LED off by making the voltage

LOW

 delay(1000); // wait for a second

}

This first thing to observe is that all Arduino programs have two main functions.

void setup() – this is where you place code that you want to execute once when

the program first starts. This is where you will place your initialization code and

where you will setup your hardware and start certain processes.

void loop() – this is where you place code that will continually repeat. This is

normally where the bulk of your coding takes place. Code is sequentially

executed and when it gets to the end, it recycles back to start executing code

from the top of this function again.

The term void in front of the function names is a return type definition. When

functions are executed, they run a specific set of code and then return a result.

This result may be the value of a light sensor, the result of a math equation or

the name of a person in your phone directory. It is some data that is being

20

returned to the original program. When we declare functions, we must tell the

software what type of data is being returned. Sometimes we return an integer

number, sometimes a character, sometimes a Boolean value (True/False). If the

function will not return anything, we declare it as void. These two functions do

not return anything so they are declared with the void keyword.

The first line in the setup() function is:

pinMode(LED_BUILTIN, OUTPUT);

pinMode is a function that allows us to tell the Arduino how we want to use a

specific pin on the computer. The UNO has 13 general purpose input/output

pins. Before we use them, we must define how we will use them. The choices

are:

 INPUT – the pin will be used to send data TO the computer.

 OUTPUT – the pin will be used to send data FROM the computer.

 INPUT_PULLUP – the pin will be used as an INPUT, and the internal

resistor connected to the pin will be enabled. This is used sometimes to

ensure a digital input is either high or low. Without the input resistor, the

input port voltage might just wonder around if no input is present and

give a non-reliable reading of the input. By using an internal resistor tied

to the positive supply, the port will go high with no input present. This

puts the port in a known condition when there is no input present.

The pinMode function takes 2 arguments. The first is the desired pin. In the

sample program, this is LED_BUILTIN which the software already knows is

assigned to pin 13 on the UNO. The second is the actual mode (OUTPUT for the

sample program). Since we use the pin to light an LED, we are sending the signal

from the computer to the LED so we need to establish it as an OUTPUT.

That is the only code required for the setup of our program. Now let’s look at

the loop function.

digitalWrite(LED_BUILTIN, HIGH);

The first command that is executed in the loop is a digitalWrite command. This

command sends a High or Low signal out on the desired pin. The function takes

two arguments. The first is the desired pin (LED_BUILTIN for our example). The

21

second is the state we want the pin in (HIGH in this example). When you write a

HIGH to the LED_BUILTIN pin (pin 13 on UNO), the LED on the board turns on.

delay(1000);

The next command is a delay function. This function takes one argument which

is the number of milliseconds to pause program execution. In our example, it is

1000 milliseconds or 1 sec. So far in the loop we have turned on the LED and

waited 1 second.

digitalWrite(LED_BUILTIN, LOW);

The next command is another digitalWrite. This time, it sets the LED port to

LOW. This turns off the LED.

delay(1000);

The last command in the loop is another 1 second delay.

So in all, this bit of code turns on the LED, waits 1 second, turns off the LED, and

waits one second. This has caused our LED to flash. Now that we reach the end

of the loop, the loop is executed again and the LED flashes again. This loop

continued indefinitely so the LED keeps flashing.

This was a simple example, but it incorporated a lot of the elements essential for

writing your own programs. You got the IDE loaded and configured. You opened

a sketch and downloaded it to the UNO. And you know the basics of outputting

a HIGH or LOW on a port. You also understand the structure of a sketch and how

the setup function is executed once and the loop function just continually

repeats.

Now you’re ready to author your own sketches. Let’s play with some more LEDs

and make ourselves a traffic light.

22

Let’s Program

Constructing a traffic light will be a variation on the basic Blink program. We will

set up three outputs to drive LEDs, turn on and off the LEDs, and add delays to

mimic a traffic light operating. First, let’s learn how to use a powerful

prototyping tool; the breadboard.

A breadboard is an electronic prototyping device that allows you to quickly

assemble circuits. After you are done, you can remove all the components and

reuse the breadboard for another circuit. It gets its name from the early days of

electronics where people would hammer nails into a literal wood bread board

and wrap components and wires around the nails to create circuits. Below is a

picture of the breadboard included with this module.

Section

4

23

The breadboard is laid out with a row of holes on the top and bottom. Each row

of holes is electrically connected. That means, whatever we plug into those holes

will be connected to anything else in the other holes in the row. The upper row

is marked with an ‘X’ and the lower is marked with a ‘Y’. This is a convenient

place to hook up the positive and negative supply voltages to a circuit so that we

can easily access it anywhere on the board. We will normally hook up the

breadboard in the orientation you see in the picture. The ‘X’ supply line on the

top and the ‘Y’ supply line on the bottom. The columns labeled with numbers on

every 5th column in the middle of the board are also electrically connected. That

connection is broken in the very center of the board by that small valley in

between the rows marked by the letters E and F to allow mounting of electronic

integrated circuits. The green lines on the diagram below show you a sample of

the places that are connected internally inside the board. It shows the top and

bottom and a few of the columns (col 5, 6, and 7). Remember that the columns

are not connected across the gap in the middle.

The holes themselves have small metal receptacles that grab on to leads of

components and wires that we stick in them. By placing the components in

specific places and using the conductive paths of the breadboard, we can create

complete circuits quickly. As a note, new boards tend to be a little finicky.

Sometimes it is hard to get wires to go in and sometimes when they are in, they

can make poor contact. With use, most boards loosen up and become more easy

to use. If you are having problems with certain circuits, check the connections

and consider moving them to a different rows on the board.

Let’s hook up the breadboard for our traffic light project.

24

From the kit of parts, take out 3 resistors, a Red LED, Green LED, and Yellow LED,

and 4 hookup wires (Red, Yellow, Green, and Black)

Bend the leads of the resistor down so they can be inserted into the breadboard.

Using the letter and numbers on the board, hook up the resistors between the

following points:

Resistor Lead 1 Lead2

1 7C 7H

2 9C 9H

3 11C 11H

Hook up the LEDs to the breadboard into the following holes:

LED +Lead (longer) -Lead (shorter)

Red 7J 7Y

Yellow 9J 9Y

Green 11J 11Y

Keep in mind that LEDs are polarity sensitive. The longer lead is the positive lead.

Finally, connect the hookup wires as follows:

Wire Breadboard Arduino

Red 7A Pin 4

Yellow 9A Pin 3

Green 11A Pin 2

Black 23Y GND

Your setup should look like the picture below:

25

With our LEDs hooked up to the Arduino, it is time to start writing some code.

Traffic Light Code

Open the Arduino IDE. The IDE opens up to the last Sketch you were working on.

Select:

File->New

This will open a brand new sketch.

For our code, we want to program the Arduino to use 3 outputs to control the

three LEDs. We are not adding any new commands then you have already seen

in the sample program.

First, we need to tell the Arduino that we want to use pins 2, 3, and 4 as the LED

outputs. In the setup() function, add the following lines of code:

 pinMode(2, OUTPUT);

 pinMode(3, OUTPUT);

 pinMode(4, OUTPUT);

As before, this tells the UNO that pins 2, 3, and 4 will be used to output a digital

signal. When a computer first starts, it’s outputs and inputs may be in an

unknown condition. To ensure you get the response you are looking for, it is

good to place them in a known condition. We will do this by telling the UNO to

26

send the LED ports to the LOW condition. LOW is zero volts, so our LEDs will not

light. Add the following code to the setup() function:

 digitalWrite(2, LOW);

 digitalWrite(3, LOW);

 digitalWrite(4, LOW);

This should be all of the setup code we need. Now let’s go into the sequencing of

our traffic light. We want it to simulate a real traffic light so we would expect it is

green for a while, turns yellow briefly, and then turns red for a while. After that,

the cycle repeats. Since our loop() function repeats, we can just setup the code

to cycle the lights once, and let the loop() function continually repeat the

sequence.

Let’s add the Green light code to the loop() function:

digitalWrite(2, HIGH);

delay(6000);

digitalWrite(2, LOW);

Looking at the code, the first line turns on the Green LED (it is attached to pin 2).

The next line waits 6000 ms (6 seconds). The last line turns off the LED. We will

do the same sequence for the yellow and the red, but we will delay the yellow

only one second. Add the following code after this code in the loop() function:

digitalWrite(3, HIGH);

delay(1000);

digitalWrite(3, LOW);

digitalWrite(4, HIGH);

delay(6000);

digitalWrite(4, LOW);

When you are all finished, the completed code should look like this:

void setup() {

 // put your setup code here, to run once:

 pinMode(2, OUTPUT);

 pinMode(3, OUTPUT);

 pinMode(4, OUTPUT);

27

 digitalWrite(2, LOW);

 digitalWrite(3, LOW);

 digitalWrite(4, LOW);

}

void loop() {

 // put your main code here, to run repeatedly:

 digitalWrite(2, HIGH);

 delay(6000);

 digitalWrite(2, LOW);

 digitalWrite(3, HIGH);

 delay(1000);

 digitalWrite(3, LOW);

 digitalWrite(4, HIGH);

 delay(6000);

 digitalWrite(4, LOW);

}

Plug your UNO into your computer’s USB port. Take this opportunity to save

your sketch. Select File->Save and then give the sketch a name (like trafficLight).

Make sure your UNO is set to the correct serial port as before. Now upload the

sketch (Sketch->Upload or click the upload button).

After the sketch uploads to the UNO, you will see your traffic light operating. If

there is a problem, check your breadboard hookup. Sometimes it is easy to put

LEDs in the wrong direction and they will not light.

Congratulations! You have started down the road of Arduino programming. So

far, you have loaded and configured the IDE, hooked up an external circuit,

started a new sketch, configured ports on the UNO, wrote code to change the

condition of the ports, added delays, and compiled and uploaded the sketch.

That is quite a lot. But there is so much more.

Serial Output

One of the most convenient aspects of the UNO is that the same port that we

use to upload sketches can also be used to download data. This is a great way to

28

pass status, text results, and sensor data back to your computer. Let’s modify

our traffic light program to include sending the state of the traffic light to the

serial output.

Serial communication is a complicated transmission between computers. Luckily,

all of the code to accomplish this has already been figured out and is

immediately available to you in the Serial library included in the IDE. A library is a

set of code files that provide some kind of functionality to a program. By

containing setup, configuration, and communication functions in a library, we

can easily reuse code, and we can keep our sketches easier to read and

troubleshoot. There are many libraries included with the IDE. But, you can also

import external libraries and even write your own. Right now, we will use the

built-in Serial library.

In our traffic light sketch, we need to initialize our Serial library. Place the

following code in the setup() function:

Serial.begin(9600);

This line of code tells the UNO to set up the Serial port at a speed of 9600 baud

(this is a measure of how many bits of data are transmitted per second).

With the serial port configured, we can now just print to it as if it were a display.

Let’s put a serial print statement after each time an LED is lit. Below is the whole

sketch with the new lines highlighted in yellow. We actually use the println()

command because it adds a new line character to the output so it will print the

next output on a new line.

void setup() {

 // put your setup code here, to run once:

 pinMode(2, OUTPUT);

 pinMode(3, OUTPUT);

 pinMode(4, OUTPUT);

 digitalWrite(2, LOW);

 digitalWrite(3, LOW);

 digitalWrite(4, LOW);

 Serial.begin(9600);

}

29

void loop() {

 // put your main code here, to run repeatedly:

 digitalWrite(2, HIGH);

 Serial.println("Green LED");

 delay(6000);

 digitalWrite(2, LOW);

 digitalWrite(3, HIGH);

 Serial.println("Yellow LED");

 delay(1000);

 digitalWrite(3, LOW);

 digitalWrite(4, HIGH);

 Serial.println("Red LED");

 delay(6000);

 digitalWrite(4, LOW);

}

The println() function will send whatever text you place in the quotes out on the

serial port. Save this sketch (clicking save now will just save it to the same file

name) and upload this sketch to the UNO as before. You should see the traffic

light sketch control your LEDs as usual. Now, select Tools->Serial Monitor.

In the bottom right, make sure the data rate is selected to 9600 baud. You will

now see the text for each LED that lights.

30

Input

We have seen how to use the UNO to output high and low voltages. Let’s see

how we get input into our UNO.

Let’s use the UNO to read a light sensor value and report it to the Serial port.

Then we will use it to set up a warning circuit if the light level gets too high.

Set up your breadboard with the following connections:

Component Lead 1 Lead 2

Red LED 20J (positive lead) 20Y (negative lead)

Resistor 20H 20C

Light Sensor 5J 5Y

And connect wires to the UNO as follows:

Wire Breadboard Arduino

Black 23Y GND

Yellow 20A Pin 2

Green 5H Pin A0

The pins A0 thru A5 on the UNO can be used as basic input and output pins. But

they have an alternate function that will take a voltage between 0 and 5V on the

pin and convert it to a digital number that can be used in the sketch. We will

display this number on the Serial output.

With the hardware all set up, let’s turn our attention to code. Start a new sketch

in the IDE.

Let’s add the following code to the setup() function:

Serial.begin(9600);

pinMode(A0, INPUT_PULLUP);

pinMode(2, OUTPUT);

digitalWrite(2, LOW);

31

Here, we initialize the Serial port as before. In the next line, we set up pin A0 to

be an input. To access this, instead of using the digitalWrite() command we will

use the analogRead() command. We use the INPUT_PULLUP setting to switch in

an internal resistor tied to the 5V supply. The rest sets up the LED pin and makes

sure it is outputting a LOW to ensure the LED is off.

With the setup complete, let’s instruct the UNO to read the value of the analog

input on A0 and output it to the Serial port.

Add the following to the loop() function:

Serial.println(analogRead(A0));

delay(250);

The first line reads the value of the analog port (analogRead(A0)) and prints it

out on the Serial port. We sent text information before which needed to be

enclosed in quotation marks. Here, we are just sending raw number so no

quotes are needed. We add a small delay so the output is easier to see.

Save this sketch (name it anything you like). Plug the UNO into your USB port

and upload this sketch. When complete, open the Serial monitor. You will see

the values of this voltage display on the screen. Move your hand to cover and

uncover the light sensor. You will see a corresponding change in the values. An

even better way to view this is to see if graphed. Close the Serial monitor and

select:

Tools->Serial Plotter

Initially, the graph will hunt a bit to adjust to the range of data. After just a few

seconds, you will have a stable scale and will more easily see how covering and

uncovering the light sensor causes a change in the output.

32

You can see from the graph that the output is low until you cover it up and then

the output goes higher. Let’s use that to come up with a sensor that gives a

warning when the light gets too dim.

We have the red LED hooked up for just that reason. Let’s add a conditional

statement to test if we reach a threshold and then light the LED if it is met. From

the graph above for our system, it looks like 100 might be a good level since it is

toward the middle of the high and low values. Look at your output and pick a

good value (the ambient light will change this value greatly so yours may be

much different).

The conditional statement we will use is an if..then…else statement.

Add the following code after the Serial.print() in the loop() function:

if (analogRead(A0) > 100) {

 digitalWrite(2, HIGH);

}

else {

 digitalWrite(2, LOW);

}

The curly brackets always enclose groups of commands that will be run as a set.

You will use them in if…then…else statements if you have multiple commands to

run. What the above code does is compare the analog A0 channel with 100. If it

is greater than 100 if executes the code in curly brackets that follow. In our case,

light the Red LED. The else statement says, if the above is not true then execute

the commands in the curly brackets that follow the else keyword. In our case, it

will turn off the Red LED.

It is very important to note the difference in using the equal sign.

If I want to set a variable in my program to a certain number I use a single equal

sign (like A = 5). If I want to compare two things to see if they are equal, I use a

double equal sign. If I write an if statement to check if A is equal to 5 it would

look like the following:

If (A==5) {do something}

This is important because if we use a single equal sign in the above expression,

the computer would first assign the value 5 to our variable A. Since this would be

33

successful, the if statement would evaluate the action as a true statement and

would execute the code that followed. This would not give you the desired result

so keep that in mind when you logically test values.

Upload your code to the UNO. You should see the LED off initially. But when you

cover the light sensor, the LED will turn on. If it is not happening, take a look at

the Serial Plotter again and see if your numbers have changed and the compare

level needs to be adjusted.

Since the ambient light might change through the course of the day, it would be

good to program in a way to set this threshold value for our LED to light. Let’s do

that with a switch.

Adding a Switch

A switch is a way to turn on and off something. In this case, we will use it to

create an input signal to an UNO port that will read HIGH when the switch is not

pressed, and LOW when it is pressed. To the previous circuit, add the following

switch connections on the breadboard:

Component Lead 1 Lead 2

Switch 13J 13Y

And hook to the UNO as follows:

Component Breadboard Arduino

1 12A Pin 3

Your setup should look similar to the following:

34

Now we just need to add some code to let the UNO know how to handle this

input. First, let’s add a line in the setup() function to let the UNO know that this

will be an input:

 pinMode(3, INPUT_PULLUP);

We will use the INPUT_PULLUP option this time so when the switch is not

pressed, the pin will be internally pulled up to the 5 volt supply and the input will

register as HIGH. When we press the button, the switch will close and apply a

ground, or LOW to the pin. This is how we will be able to check the condition of

the switch.

We need to decide how to implement the variable light trigger setting. One way

to do this is to create a variable. A variable is a memory location that can hold

data and can be addressed using a simple name. We will name our variable

trigger_level. The only thing left is to decide what type of value this will be.

There are many different types of data in programming. We can use variables to

hold integers, real numbers, letters, logic values, and more. For the analogRead()

function, it returns an integer number between 0 and 1023. So we will define

our variable to hold and integer value. Before the setup() function, add the

following line:

int trigger_level;

35

This line tells the software that we want it to reserve a memory location that will

store an integer called trigger_level. We can now use this variable by that name

anywhere in our program. The reason we declared it right at the top is so all of

the functions have access to it. If we declared it in setup(), it would only be able

to be used in the setup function. This is called the scope of a variable. We are

going to set the default value once (in setup()) and then change its value in

loop(). That means we need it to have a global (whole program) visibility. That is

why we declared it first thing in our program.

Now let’s give it a default value. Add the following code to the setup() function:

 trigger_level = 200;

This tells the software that we want to assign the value of 200 to the memory

location we have set aside.

Now, we will change the code to use this new variable. In the loop() function, on

the line we put the constant to compare the light signal with (if

(analogRead(A0) > 100) change the constant to our variable. The line will look

like the following:

 if (analogRead(A0) > trigger_level) {

This if statement will now evaluate the current light level with our trigger_level

variable. This is great because it means we can change it during program run

time. And that is what we will do now.

Add the following conditional if statement before the other one in the loop()

function:

if (!digitalRead(3)){

 trigger_level = analogRead(A0);

}

This code looks at the condition of the UNO pin 3 input. Remember, we set the

input to normally look HIGH and it will go LOW when the button is pushed. The

exclamation point is used in code to mean NOT. So the condition in the if

statement really says if NOT digitalRead(3). The HIGH condition is considered

TRUE in computer terms. LOW is considered FALSE. So to get a TRUE output of

the condition, digitalRead(3) would have to be LOW (button pressed) so when

we NOT it, we get HIGH or TRUE and the condition is satisfied and the following

36

code in the brackets is run. Getting this logic right so the code does what you

want is half the battle of programming.

So when the button is pressed, the code in brackets is run and the variable

trigger_level is set with the current analogRead value. Now, that value will be

used to determine if the LED should turn on or not. The full code listing is as

follows:

int trigger_level;

void setup() {

 // put your setup code here, to run once:

 Serial.begin(9600);

 pinMode(A0, INPUT_PULLUP);

 pinMode(2, OUTPUT);

 pinMode(3, INPUT_PULLUP);

 digitalWrite(2, LOW);

 trigger_level = 200;

}

void loop() {

 // put your main code here, to run repeatedly:

 Serial.println(analogRead(A0));

 if (!digitalRead(3)) {

 trigger_level = analogRead(A0);

 }

 if (analogRead(A0) > trigger_level) {

 digitalWrite(2, HIGH);

 }

 else {

 digitalWrite(2, LOW);

 }

 delay(250);

}

37

Upload this code to your UNO. Cover the light sensor partway and press the

button. This will set the new value of the trigger_level. Release the button and

move your hand over the light sensor to get the LED to turn on and off. This is

such an advantage over the basic program where we hard coded the trigger

level of the LED. If we took this device outside, we might have a really hard time

triggering it. This modification allows us to update the trigger without having to

upload new code. This was a great use of a variable.

Using Libraries

One of the more convenient aspects of Arduino is the ability to reuse code

written by others. Let’s build one final feature into our light alert program. Let’s

say the LED is not enough warning because it requires that you are looking at the

device to know when the LED turns on. It would be very useful to have an alarm

sound a short tone so you could have an aural signal as well as visual. Let’s do

that. Programming sound can be a complicated process on a microcontroller like

the UNO uses. It requires that you generate a waveform of a specific frequency

and often requires you to do this in the background using programming

techniques called interrupts. Luckily, someone has already done this. So we will

import the library and then use its functionality without having to write all of the

code.

To do this, open our light program in the Arduino IDE.

Select Sketch->Include Library->Manage Libraries…

38

This will bring up the Library Manager. Here is a list of standard libraries that are

directly supported in the IDE. There are a lot of libraries to choose from, but

there are many libraries written by hobbyists that are not on the list. You can

still import them into the IDE by downloading them as a .zip file, selecting

Sketch->Include Library->Add .ZIP Library… and this will add it for your use.

In the Library Manager, scroll down the list until you get to the available tone

libraries. Alternately, you can type tone in the filter box at the top to limit the

choices and get you to the tone libraries quicker.

You may see multiple Tone libraries. Click on the one labeled ToneLibrary. You

will now see a button on the lower right of the box that says “Install.” Click this

button to install the library. After the library loads, click Close.

Now, let’s set up the speaker for our project on our breadboard. Make the

following connections:

Component Lead 1 Lead 2

Speaker Black - 22Y Red - 22H

Resistor 22G 22C

And connect to the UNO board:

Component Breadboard Arduino

Wire 22A Pin 4

Turning attention back to our code, the first thing we will want to do is add the

library to our sketch. Loading the library to the IDE just made it available. We

need to actually add it to our sketch.

Select Sketch->Include Library->ToneLibrary

You may need to scroll down the list to find it. If you look at your code, it now

has the following line:

#include <Tone.h>

This has been added automatically by the IDE. This tells the sketch to include all

of the functions of this library. We can now make calls to the routines in the

library and the IDE will recognize them.

39

To get the full functionality of the library, we will create an object that will have

access to all of the code in the library. This is called creating an instance of the

object. We could actually add a bunch of different speakers to the UNO board

and create an instance for each.

Add the following code outside of all of the functions (right after the integer

variable declaration is a good spot):

Tone spkr;

This creates a variable of the type Tone. This variable is how we will access the

routines in the Tone library.

We have saved memory for our instance. But we still need to instruct our sketch

to use it. We will do this with the begin function. Many libraries have a begin

function (remember our Serial function?) to initially assign and setup a library

device. Add the following to the setup() function right after the Serial.begin line:

 spkr.begin(4);

This initializes the spkr variable and lets the library know what pin we are using.

We added a speaker to our project so we will need to configure the UNO pin as

an output. Add the following line to the setup() function:

 pinMode(4, OUTPUT);

Let’s implement our tone warning as its own routine. Just like the functions

setup() and loop(), we can create small packages of code under a function name

and then call that function to execute the code. It is a great way to code because

it prevents you from having to repeat code and it keeps your code more

readable. Let’s create a function called triggerSound. In your code, after the very

last bracket, insert the following:

void triggerSound(){

 spkr.play(NOTE_A3, 25);

 delay(25);

 spkr.play(NOTE_A4, 50);

 delay(50);

}

40

Since this function will not return any values, it is declared as void. The next

command is the play command. It will play a note for a given duration. You can

get more information on any of the libraries from the sources that supply them.

The libraries available in the Library Manager have links to the developer’s site.

Another advantage of libraries is that they sometimes define difficult values into

easy to understand and use formats. The ToneLibrary comes with a included file

that defines the frequency of the musical notes that it can play. You access them

with NOTE_ followed by the note and octave (A3) to play. You can then enter a

duration that the tone will play. This function is referred to as non-blocking. That

means that if you ask it to play something, it will start that process and then

return to the main program. Because of this, it can then be triggered again

before the tone has completed playing. This can cause problems in some

programs if the function is called too many times. To prevent issues, we will just

have our program wait the same amount of time the note is playing. We use two

notes in our function, but you can add anything you want. This could be the

sound of a French police siren, a song, or whatever you like.

Now, when the sketch determines that the light limit has been reached and

turns on the LED, let’s also call our triggerSound() function. In the loop() function

right after the digitalWrite(2, HIGH) command, add the following:

 triggerSound();

This will play our alert in the spkr. The complete code listing is below:

#include <Tone.h>

int trigger_level;

Tone spkr;

void setup() {

 // put your setup code here, to run once:

 Serial.begin(9600);

 spkr.begin(4);

 pinMode(A0, INPUT_PULLUP);

 pinMode(2, OUTPUT);

 pinMode(3, INPUT_PULLUP);

41

 pinMode(4, OUTPUT);

 digitalWrite(2, LOW);

 trigger_level = 200;

}

void loop() {

 // put your main code here, to run repeatedly:

 Serial.println(analogRead(A0));

 if (!digitalRead(3)) {

 trigger_level = analogRead(A0);

 }

 if (analogRead(A0) > trigger_level) {

 digitalWrite(2, HIGH);

 triggerSound();

 }

 else {

 digitalWrite(2, LOW);

 }

 delay(250);

}

void triggerSound() {

 spkr.play(NOTE_A3, 25);

 delay(25);

 spkr.play(NOTE_A4, 50);

 delay(50);

}

Upload the code to your UNO. Set the trigger level as before. Now, when you

trigger the LED, you will hear a quick tone to let you know the trigger level has

been reached.

42

Conclusion

You have come a long way. You have loaded the Arduino IDE, ran a sample

project, learned how to construct temporary circuits with a breadboard, wrote

code to control the input and output of the UNO, communicated over the Serial

port, and added and used a library. These are the basic skills needed to do so

many projects of your own. It is our hope that you will continue to program and

learn the full potential of this amazing platform.

43

Appendix

For more information on Arduino, visit: www.aduino.cc

For more Arduino information, add-on kits, and different board variants visit:

 www.sparkfun.com

 www.adafruit.com

http://www.aduino.cc/
http://www.sparkfun.com/
http://www.adafruit.com/

